Comparison of PM10 washout on urban and rural areas

Open access

Abstract

This paper reports the results of research into the effectiveness of scavenging of PM10, resulting from the occurrence of solid and liquid hydrometeors. The measurement campaign was undertaken over 7 years and involved the registration of PM10 in areas which have different aerosanitary conditions (i.e. urban and undeveloped rural area). The analysis involved 426 observations taken at constant time intervals of 0.5 hour. The measurements of the concentration of PM10 were performed by means of a reference method accompanied by concurrent registration of basic meteorological parameters. It was indicated that in a urban location, the intensity of the local emission sources is a principal factor influencing the value of mass concentration changes and the effectiveness of the dust scavenging that accompanies a given type of precipitation. It was also noted that for the same intensity of precipitation, only the deposition of convective rainfall and long-term large-scale precipitation do not lead to statistically relevant differences in the value of mass concentrations of dust for both areas. It was indicated that during solid and liquid frontal precipitation of light intensity (< 0.5 mm·h−1), the effectiveness of PM10 removing is less in rural area. It was statistically proven that continuous precipitation of constant intensity and duration exceeding 2 hours has a similar effect of purifying the ambient air in both locations. The study revealed that short-term solid precipitation provides better characteristics of scavenging of PM10 compared with classic rainfall

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Connan O Maro D Hebert D Roubsard P Goujon R Lettelier B et al. Wet and dry deposition of particles associated metals (Cd Pb Zn Ni Hg) in a rural wetland site Marais Vernier France. Atmos Environ. 2013; 67:394-403. DOI: 10.1016/j.atmosenv.2012.11.029.

  • [2] Santachiara G Prodi F Belosi F. Atmospheric aerosol scavenging processes and the role of thermo- and diffusio-phoretic forces. Atmos Res. 2013;128:46-56. DOI: 10.1016/j.atmosres.2013.03.004.

  • [3] Ebert P Kibler M Mainka A Terbenken B Baechmanj K Frank G et al. A field study of particle scavenging by raindrops of different sizes using monodisperse trace aerozol. Aerosol Sci. 1998; 29:173-186. DOI: 10.1016/S0021-8502(97)00043-8.

  • [4] Zhao TL Gong SL Zhang XY McKendry IG. Modeled size-segregated wet and dry deposition budgets of soil dust aerosol during ACE-Asia 2001: implications for trans-Pacific transport. J Geophys Res. 2003;108:8665-8673. DOI: 10.1029/2002JD003363.

  • [5] Andronache C. Diffusion and electric charge contributions to below-cloud wet removal of atmospheric ultra-fine aerosol particles. Aerosol Sci. 2004;35:1467-1482. DOI: 10.1016/j.jaerosci.2004.07.005.

  • [6] Kim J Jung CH Choi BC Oh SN Brechtel FJ Yoon SC et al. Number size distribution o fatmospheric aerosols during ACE-Asia dust and precipitation events. Atmos Environ. 2007;41:441-485. DOI: 10.1016/j.atmosenv.2007.02.024.

  • [7] Chate DM Rao P Naik M Momin G Safai P Ali K. Scavenging of aerosols and their chemical species by rain. Atmos Environ. 2003;37:2477-2484. DOI: 10.1016/S1352-2310(03)00162-6.

  • [8] Murakami M Kimura T Magono C. Observation of precipitation scavenging for water-soluble particles. J Meteo Soc Japan 1983;61:346-357. DOI: 10.2151/jmsj1965.61.3_346.

  • [9] Schumann T. Large discrepancies between theoretical and field-determined scavenging coefficients. J Aerosol Sci. 1989;20:1159-1162. DOI: 10.1016/0021-8502(89)90786-6.

  • [10] Flossmann AI. A 2-D spectral model simulation of the scavenging of gaseous and particulate sulfate by a warm marine cloud. Atmos Res. 1994;32: 233-248. DOI: 10.1016/0169-8095(94)90063-9.

  • [11] Pruppacher HR Klett JD. Microphysics of Clouds and Precipitation. Second edition. Norwell Massachusetts: Kluwer Academic; 1997.

  • [12] Wang PK Pruppacher HR. On the efficiency with which aerosol particles of radius less than 1 μm are collected by columnar ice crystals. Pure Appl Geophys. 1980;118:1090-1108. DOI: 10.1007/BF01593053.

  • [13] Tinsley BA Rohrbaugh RP Hei M. Electroscavenging in clouds with broad droplet size distributions and weak electrification. Atmos Res. 2001;59-60:115-135. PII: S0169-8095(01)00112-0.

  • [14] Bae SY Jung CH Kim YP. Relative contributions of individual phoretic effect in the below-cloud scavenging process. Aerosol Sci. 2009;40:621-632. DOI: 10.1016/j.jaerosci.2009.03.003.

  • [15] Feng J. A size-resolved model for below-cloud scavenging of aerosols by snowfall. J Geophys Res. 2009;114:D8. DOI: 10.1029/2008JD011012.

  • [16] Chate DM Murugavel P Ali K Tiwari S Beig G. Below-cloud rain scavenging of atmospheric aerosols for aerosol deposition models. Atmos Res. 2011;99:528-536. DOI: 10.1016/j.atmosres.2010.12.010.

  • [17] Radke LF Hobbs PV Eltgroth MW. Scavenging of aerosol particles by precipitation. J Appl Meteorol. 1980;19:715-722. DOI: 10.1175/1520-0450(1980)019<0715:SOAPBP>2.0.CO;2

  • [18] Andronache C Gronholm T Laakso L Phillips V Venalainen A. Scavenging of ultrafine particles by rainfall at a boreal site: observations and model estimations. Atmos Chem Phys. 2006;6:4739-4754. DOI: 10.5194/acp-6-4739-2006.

  • [19] Bae SY Jung CH Kim YP. Derivation and verification of an aerosol dynamics expression for the below-cloud scavenging process using the moment 41 (2010). J Aerosol Sci. 2010;41:266-280. DOI: 10.1016/j.jaerosci.2009.11.006.

  • [20] Olszowski T. Changes in PM10 concentration due to large-scale rainfall. Arab J Geosci. 2016;9:160. DOI: 10.1007/s12517-015-2163-2.

  • [21] Davenport HM Peter LK. Field studies of atmospheric particulates concentration changes during precipitation. Atmos Environ. 1978;12:997-1008. DOI: 10.1016/0004-6981(78)90344-X.

  • [22] Mircea M Stefan S Fuzzi S. Precipitation scavenging coefficient: influence of measured aerosol and raindrop size distributions. Atmos Environ. 2000;34:5169-5174. DOI: 10.1016/S1352-2310(00)00199-0.

  • [23] Andronache C. Estimated variability of below-cloud aerosol removal by rainfall for observed aerosol size distributions. Atmos Chem Phys. 2003;3:131-143. DOI: 10.5194/acp-3-131-2003.

  • [24] Laakso L Gronholm T Rannik U Kosmale M Fiedler V Vehkamaki H et al. Ultrafine particle scavenging coefficients calculated from 6 years field measurements. Atmos Environ. 2003;37:3605-3613. DOI: 10.1016/S1352-2310(03)00326-1.

  • [25] Maria SS Russell LM. Organic and inorganic aerosol below-cloud scavenging by suburban New Jersey precipitation. Environ Sci Technol. 2005;39(13):4793-4800. DOI: 10.1021/es0491679.

  • [26] Shukla JB Sundar S Misra AK Naresh R. Modelling the removal of gaseous pollutants and particulate matters from the atmosphere of a city by rain: Effect of cloud. Environ Model Assess. 2008;13:255-263. DOI: 10.1007/s10666-007-9085-7.

  • [27] Kyrö E Grönholm T Vuollekoski H Virkkula A Kulmala M Laakso L. Snow scavenging of ultrafine particles. Field measurements and parameterization. Boreal Environ Res. 2009;14:527-538.

  • [28] Tai APK Mickley LJ Jacob DJ. Correlations between fine particulate matter (PM2.5) and meteorological variables in the United States: Implications for the sensitivity of PM2.5 to climate change. Atmos Environ. 2010;44:3976-3984. DOI: 10.1016/j.atmosenv.2010.06.060.

  • [29] Zhang X Huang Y Rao R. Aerosol characteristics including fumigation effect under weak precipitation over the southeastern coast of China. J Atmos Sol-Terr Phys. 2012;84-85:25-36. DOI: 10.1016/j.jastp.2012.05.005.

  • [30] Seinfeld JH Pandis SN. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. New York: Wiley 1998.

  • [31] The Opole Voivodeship Inspectorate of Environment Protection. Five years assessment of air quality due to its pollutants in Opole Province. http://www.opole.pios.gov.pl/wms/Pliki/2014/Piecioletnia_ocena_jakosci_powietrza_za_lata_2009-2013.pdf.

  • [32] The Opole Voivodeship Inspectorate of Environment Protection. Air quality measurement results. http://www.opole.pios.gov.pl/wms/Pliki/2014/Wyniki_pomiarow_jakosci_powietrza_2013.pdf.

  • [33] Castro A Alonso-Blanco E González-Colino M Calvo A Fernández-Raga M Fraile R. Aerosol size distribution in precipitation events in León Spain. Atmos Res. 2010;96:421-435. DOI: 10.1016/j.atmosres.2010.01.014.

  • [34] European Standard BS EN 12341:1999. Air quality. Determination of the PM10 fraction of suspended particulate matter. Reference method and field test procedure to demonstrate reference equivalence of measurement methods. 1999. https://shop.bsigroup.com/ProductDetail/?pid=000000000001603131.

  • [35] Paramonov M Virkula A Grönholm T Göke S Laakso L. Below-cloud scavenging of aerosol particles by snow at an urban site in Finland. Internati Aerosol Conf. Helsinki: August 29-September 2010. https://www.atm.helsinki.fi/FAAR/reportseries/rs-128.pdf.

  • [36] Mote T Lacke M Shepherd J. Radar signatures of the urban effect on precipitation distribution: a case study for Atlanta Georgia. Geophis Res Lett. 2007;34:L20710. DOI: 10.1029/2007GL031903.

  • [37] Hand L Shepherd J. An investigation of warm season spatial rainfall variability in Oklahoma City: possible linkages to urbanization and prevailing wind. J App Meteo Clim. 2009;48:251-269. DOI: 10.1175/2008JAMC2036.1.

  • [38] Aikawa M Hiraki T. Washout/rainout contribution in wet deposition estimated by 0.5 mm precipitation sampling/analysis. 2009;43:4935-4939. DOI:10.1016/j.atmosenv.2009.07.057.

  • [39] Degórska A Śnieżek T. Comparison of chemical composition of PM10 dust in urban and non-urban background. In: Emission of Polluting Substances Study of their Characteristics and Method of Abatement. Zabrze Poland: Institute of Environmental Engeenring Polish Academy of Sciences; 2008.

  • [40] Viana M Querol X Alastuey A Gangoiti G Menendez M. PM levels in the Basque Country (Northern Spain): analysis of a 5-year data record and interpretation of seasonal variations. Atmos Environ. 2003;37:2879-2891. DOI: 10.1016/S1352-2310(03)00292-9.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 1.467
5-year IMPACT FACTOR: 1.226

CiteScore 2018: 1.47

SCImago Journal Rank (SJR) 2018: 0.352
Source Normalized Impact per Paper (SNIP) 2018: 0.907

Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 221 111 1
PDF Downloads 135 76 2