The Use of Two-Diode Substitute Model in Predicting the Efficiency of PV Conversion in Low Solar Conditions

Open access

Abstract

The article presents theoretical foundations of a two-diode equivalent model of a photovoltaic cell/module (PV), together with calculation procedures. A physical interpretation of individual components of an equivalent model was presented. Its practical application in predicting efficiency of operation of various PV cells and modules in low insulation conditions was demonstrated. The obtained predictions were verified with the actual results of their operation in open space (outdoor). The practical suitability of the “model” in early detection of ageing phenomena, such as, for example, absorber degradation taking place in PV modules, was demonstrated. The article was prepared on the basis of the results of testing five different PV modules with various constructions, made of different materials and absorbers, such as: c-Si, mc-Si, CIS, a-Si_SJ, a-Si_TJ. The used measurement data were collected during the 16-year period of the experimental PV modules testing system operation in University of Opole, equipped with a data acquisition system.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Smith RA. Semiconductors. Cambridge: Cambridge University Press; 1978. https://vufind.carli.illinois.edu/all/vf-isl/Record/776963.

  • [2] Sze SM. Physics of Semiconductor Devices. New York: Wiley; 1981.

  • [3] Shockley W. The Theory of p-n Junctions and p-n Junction Transistors. In: Electrons and Holes in Semiconductors. Princeton NJ: D. Van Nostrand; 1950.

  • [4] Hovel HJ. Semiconductors and Semimetals vol. 11. New York: Academic Press; 1975.

  • [5] Shockley W Read WT. Statistics of the recombination of holes and electrons. Phys Rev. 1952;87(5):835-842. DOI: 10.1103/PhysRev.87.835. https://journals.aps.org/pr/abstract/10.1103/PhysRev.87.835.

  • [6] Sah CT Noyce RN Shockley W. Carrier generation and recombination in p-n junction and p-n junction characteristics. Proc IRE.1957;45:1228. DOI: 10.1109/JRPROC.1957.278528

  • [7] McIntosh K. Lumps Humps and Bumps: Three Detrimental Effects in the Current-Voltage Curve of Silicon Solar Cells Ph.D. Thesis. Sydney: UNSW; 2001.

  • [8] Milnes AG Feucht DL. Heterojunctions and Metal-Semiconductor Junctions. New York: Academic Press Elsevier; 1972. http://www.sciencedirect.com/science/book/9780124980501.

  • [9] Markvart T Castañer L. editors. Practical Handbook of Photovoltaics. Fundamentals and Applications. Elsevier; 2003. http://www.sciencedirect.com/science/book /9781856173902#ancPT1.

  • [10] Breitenstein O Bauer J Altermatt PP Ramspeck K. Influence of defects on solar cell characteristics. Solid State Phenomena. 2010;156-158:1-10 http://www.scientific.net.

  • [11] Hussein R Borchert D Grabosch G Fahrner WR. Dark I-V-T measurements and characteristics of (n) a-Si/(p) c-Si heterojunction solar cells. Solar Energy Mater Solar Cells. 2001;69:123-129. https://www.deepdyve.com/lp/elsevier/dark-i-v-t-measurements-and-characteristics-of-n-a-si-p-c-sidOAySnrsPD.

  • [12] Luque A Hegedus S editors. Handbook of Photovoltaic Science and Engineering. Chichester England: John Wiley Sons; 2003.

  • [13] Breitenstein O Altermatt P Ramspeck K Schenk A. The Origin of Ideality Factors > 2 of Shunts and Surfaces in the Dark I-V Curves of Si Solar Cells. Proc. 21th Eur. Photovoltaic Solar Energy Conference and Exhibition. Dresden: 2006. http://www-old.mpi-halle.mpg.de/mpi/publi/pdf/7197_06.pdf.

  • [14] Schenk A Krumbein U. Coupled defect -level recombination: theory and application to anormalous diode characteristics. J Appl Phys. 1995;78:3185.

  • [15] Sah CT. Fundamentals of Solid-State Electronics. Singapore: World Scientific;1992.

  • [16] Queisser HJ. Forward characteristics and efficiencies of silicon solar cells. Solid-State Electronics. 1962;5:1-10. DOI: 10.1016/0038-1101(62)90012-6.

  • [17] Kaminski A Marchand JJ Omari HEl Laugier A Le QN Sarti D. Conduction Processes in Silicon Solar Cells. Proc. 25th IEEE PVSC. Washington DC; 1996:573-576.

  • [18] Breitenstein O Heydenreich J. Non-ideal I-V-characteristics of block-cast silicon solar cells. Solid State Phenomena. 1994;37-38:139. DOI: 10.4028/www.scientific.net/SSP.37-38.139

  • [19] Gray JL. The Physics of the Solar Cell. Chapter 3. In: Luque A Hegedus S. editors. Handbook of Photovoltaic Science and Engineering. Chichester England: John Wiley Sons; 2003.

  • [20] Reicha N.H van Sarka WGJHM Alsemaa EA Lofc RW Schroppc REI Sinkeb WC et al. Crystalline silicon cell performance at low light intensities. Solar Energy Mater Solar Cells. 2009;93:1471-1481. DOI: 10.1016/j.solmat.2009.03.018

  • [21] Müllejans H Hyvärinen J Karila J Dunlop ED. Reliability of the routine 2-diode model fitting of PV modules. Proc 19th Europ Photovolt Solar Energy Conf. Paris 2004;2459. http://wonwoosystem.co.kr/pic/catalog/Reliability%20of%20Routine%202-Diode%20Model%20Fitting%20of%20PV%20Modules.pdf.

  • [22] King DL Boyson WE Kratochvil JA. Photovoltaic Array Performance Model. Sandia National Laboratories Report SAND2004-3535 Unlimited Release; 2004. http://prod.sandia.gov/techlib/access-control.cgi/2004/043535.pdf.

  • [23] Yordanov GH Midtgård OM Saetre TO. Two-Diode Model Revisited: Parameters Extraction from Semi-Log Plots of I-V Data. 25th European Photovoltaic Solar Energy Conference and Exhibition /5th World Conference on Photovoltaic Energy Conversion 6-10 September 2010 Valencia Spain: 2010; 4156. http://www.elkraft.ntnu.no/eno/Papers2010/Yordanov-EUPVSEC.pdf.

  • [24] Green M. Solar Cells. Operating Principles Technology and System Applications. Sydney Australia: University of New South Wales (UNSW); 1992. https://searchworks.stanford.edu/view/1071954.

  • [25] Wacławek M Rodziewicz T. Ogniwa słoneczne. Wpływ środowiska naturalnego na ich pracę. (Solar cells. The impact of the environment on their work). Warszawa: WNT; 2015.

  • [26] IEC 60 904-10 2nd edition 2006. Methods of linearity measurement. Geneva; 2006. https://webstore.iec.ch/publication/3873 http://www.iec.ch/dyn/www/f?p=103:23:0::::FSP_ORG_ID:1276.

  • [27] IEC 60 891 2nd edition. Photovoltaic devices - Procedures for temperature and irradiance corrections to measured I-V characteristics. Geneva: IEC 2009-12. https://webstore.iec.ch/publication/3821.

  • [28] Corrs S Böhm M. Validation and comparison of curve correction procedures for silicon solar cells. Proc 14th PVSEC. Barcelona: 1997;1:220-223.

  • [29] IEC 60 904-1. Photovoltaic Devices - Part 1: Measurement of Photovoltaic Current-Voltage Characteristics. Geneva: IEC; 1987. http://www.iec.ch/dyn/www/f?p=103:23:0::::FSP_ORG_ID:1276.

  • [30] Blaesser G. PV array Data Translation Procedure. Proc. 13th EU PVSEC. Nice: 1995.

  • [31] Marion B Rummel S Anderber A. Current-voltage translation by bilinear interpolation. Progress in Photovoltaics. 2004;12:593-607. DOI: 10.1002/pip.551.

  • [32] Virtuani A Pavanello D Friesen G. Overview of Temperature Coefficients of Different Thin Film Photovoltaic Technologies. Proc. 25th EU PVSEC. Valencia: 2010;4248-4252. https://www.researchgate.net/profile/Diego_Pavanello/publication/256080289_Overview_of_Temperature_Coefficients_of_Different_Thin_Film_Photovoltaic_Technologies/links/557eda6d08aeb61eae260cd0/Overview-of-Temperature-Coefficients-of-Different-Thin-Film-Photovoltaic-Technologies.pdf.

  • [33] King DL Kratochvil JA Boyson WE. Temperature Coefficients for PV Modules and Arrays. Measurement Methods Difficulties and Results. Proc. 26th IEEE PVSC. Anaheim: 1997. DOI: 10.1109/PVSC.1997.654300.

  • [34] Tsuno Y Hishikawa Y Kurokawa K. Temperature and Irradiance Dependence of the I-V Curves of Various Kinds of Solar Cells. Technical Digest of the PVSEC 15 Shanghai: 2005;422-423. http://www.kurochans.net/paper/15th_PVSEC/pvsec15_tsuno.pdf.

  • [35] IEC 60 904-6 2nd edition 2006: Requirements for reference solar modules. Geneva: 2006. http://www.iec.ch/dyn/www/f?p=103:23:0::::FSP_ORG_ID:1276.

  • [36] Lorenz D Backus C. A new technique for predicting silicon solar cell short-circuit currents at reference irradiance conditions. Proc. 15th IEEE Photovoltaic Specialist Conf. Orlando FL: 1981.

  • [37] Helmke C Jantsch M Ossenbrink HA. An assessment of the results of calibrating 600 silicon PV reference devices. Proc. 13th Europ Photovoltaic Solar Energy Conf Exhibit. Nice: 1995:2319-2323. http://cordis.europa.eu/publication/rcn/199711376_es.html.

  • [38] Rodziewicz T Zaremba A Wacławek M. Cheap sensor made of multicrystalline silicon for insolation and temperature measurements. Ecol Chem Eng S. 2016;23(4):583-591. DOI: 10.1515/eces-2016-0041.

  • [39] Blaesser G. The reduced current-voltage characteristic of PV arrays and its quasi-independence of ambient conditions. Proc 14th Europ Photovolt Solar Energy Conf. Barcelona: 1997;1520-1523. http://cordis.europa.eu/publication/rcn/199710913_en.html.

  • [40] Caamaño-Martín E Lorenzo E Lastres C. Crystalline silicon photovoltaic modules: characterization in the field of rural electrification. Prog Photovolt Res Appl. 2002;10:481-493. DOI: 10.1002/pip.436.

  • [41] IEC 61853-4 ED1. Photovoltaic (PV) module performance testing and energy rating - Part 4: Standard reference climatic profiles. http://www.iec.ch/dyn/www/f?p=103:23:0::::FSP_ORG_ID:1276 http://www.iec.ch/dyn/www/f?p=103:38:6878505369315::::FSP_ORG_IDFSP_APEX_PAGEFSP_PROJECT_ID:12762322384.

  • [42] IEC 1646. Thin-film terrestrial photovoltaic (PV) modules - Design qualification and type approval. http://www.iec.ch/dyn/www/f?p=103:23:0::::FSP_ORG_ID:1276.

  • [43] Żdanowicz T Rodziewicz T. Wacławek M. Evaluation of actual PV modules performance in low insolation conditions. Opto-Electronics Rev. 2001;9(4):361-366. http://www.wat.edu.pl/review/optor/2001/4/9(4)361.pdf.

  • [44] Rodziewicz T Zaremba A Wacławek M. Technical and economic aspects of photovoltaic conversion of Southern Poland. Ecol Chem Eng S. 2014;21(2):337-351. DOI: 10.2478/eces-2014-0026.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 1.467
5-year IMPACT FACTOR: 1.226

CiteScore 2018: 1.47

SCImago Journal Rank (SJR) 2018: 0.352
Source Normalized Impact per Paper (SNIP) 2018: 0.907

Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 222 98 0
PDF Downloads 156 80 0