Kinetic and Isotherm Analysis of Cu(II) Adsorption onto Almond Shell (Prunus Dulcis)

Open access

Abstract

In the work, adsorption of Cu2+ ions onto almond shell were investigated under different operational conditions. Almond shell was used without any pretreatment prior to the tests. The optimum conditions for adsorption of Cu2+ ions through almond shell were determined to be; pH 5.0, temperature 20°C, shaking rate 125 rpm, sorbent dose 0.3 g and initial Cu2+ ion concentration 50 mg/dm3. The equilibrium duration of the system was 60 minutes. The sorption capacities of the sorbents were predicted with the aid of equilibrium and kinetic models. The interactions of peanut shell with metal ions were constituted by SEM, EDX, FT-IR, XRD and AFM. The pseudo-first-order, pseudo-second-order, Weber-Morris, Elovich model and Bangham kinetic models were applied to test the experimental data. The Cu+2 ions adsorption onto almond shell was better defined by the pseudo-second-order kinetic model, for initial pH. The equilibrium data were evaluated using Langmuir, Freundlich, Temkin, D-R and Harkins Jura isotherms. The highest R2 value in isotherm studies was obtained from Langmiur isotherm (R2 = 0.98) for the inlet concentration.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Zhou B Wang Z Shen D Shen F Wu C Xiao R. Low cost earthworm manure-derived carbon material for the adsorption of Cu2+ from aqueous solution: Impact of pyrolysis temperature. Ecol Eng. 2017;98:189-195. DOI: 10.1016/j.ecoleng.2016.10.061.

  • [2] Suguna M Reddy AS Kumar NS Krishnaiah A. Biosorption of manganese(II) ions from aqueous solution by glutaraldehyde cross-linked chitosan beads: Equilibrium and kinetic studies. Adsorp Sci Technol. 2010;28:213-219. DOI: 10.1260/0263-6174.28.3.213.

  • [3] Feng NC Guo XY Liang S. Adsorption study of copper(II) by chemically modified orange peel. J Hazard Mater. 2009;164:1286-1292. DOI: 10.1016/j.jhazmat.2008.09.096.

  • [4] Anırudhan TS Rajı C Shubha KP. Immobilization of heavy metals from aqueous solutions using polyacrylamide grafted hydrous tin(IV) oxide gel having carboxylate functional groups. Water Res. 2001;35:300-310. DOI: 10.1016/S0043-1354(00)00234-7.

  • [5] Kocadagıstan E Bascı N Kocadagıstan B. Biosorption of copper(II) from aqueous solutions by wheat shell. Desalination. 2004;164:135-140. DOI: 10.1016/S0011-9164(04)00172-9.

  • [6] Hashemian S Mirshamsi M. Kinetic and thermodynamic of adsorption of 2-picoline by sawdust from aqueous solution. J Industrial Eng Chem. 2012;18(6):2010-2015. DOI: 10.1016/j.jiec.2012.05.020.

  • [7] Yu H Pang J Ai T Liu L. Biosorption of Cu2+ Co2+ and Ni2+ from aqueous solution by modified corn silk: Equilibrium kinetics and thermodynamic studies. J Taiwan Inst Chem Eng. 2016;62:21-30. DOI: 10.1016/j.jtice.2016.01.026.

  • [8] Ding Y Jing D Gong H Zhou L Yang X. Biosorption of aquatic cadmium(II) by unmodified rice straw. Bioresour Technol. 2012;114:20-25. DOI: 10.1016/j.biortech.2012.01.110.

  • [9] Sundaram MN Sivakumar S. Use of indian almond shell waste and groundnut shell waste for the removal of azure a dye from aqueous solution. J Chem Pharm Res. 2012;4(4):2047-2054. http://www.jocpr.com/articles/use-of-indian-almond-shell-waste-and-groundnut-shell-waste-for-the-removal-of-azure-a-dye-from-aqueoussolution.pdf.

  • [10] Abdessalem O Mourad B Najwa A. Preparation modification and industrial application of activated carbon from almond shell. J Ind Eng Chem. 2013;19(6):2092-2099. DOI: 10.1016/j.jiec.2013.03.025.

  • [11] Çekim M Yıldız S Dere T. Biosorption of copper from synthetic waters by using tobacco leaf: equilibrium kinetic and thermodynamic tests. J Environ Eng Landscape Manage. 2015;23(03):172-182. DOI: 10.3846/16486897.2015.1050398.

  • [12] Sahranavard M Ahmadpour A Doosti MR. Biosorption of hexavalent chromium ions from aqueous solutions using almond green hull as a low-cost biosorbent. Eur J Sci Res. 2011;58(3):392-400. DOI: 10.1155/2014/670249

  • [13] Deniz F. Dye removal by almond shell residues: Studies on biosorption performance and process design.

  • Materials Sci Eng. 2013;C 33:2821-2826. DOI: 10.1016/j.msec.2013.03.009.

  • [14] Ardejani FD Badii K Yousefi Limaee N Shafaei SZ Mirhabibi AR. Adsorption of Direct Red 80 dye from aqueous solution onto almond shells: Effect of pH initial concentration and shell type. J Hazard Mater. 2008;151:730-737. DOI: 10.1016/j.jhazmat.2007.06.048.

  • [15] Mehrasbi MR Farahmandkia Z Taghibeigloo B Taromi A. Adsorption of lead and cadmium from aqueous solution by using almond shells. Water Air Soil Pollut. 2009;199:343-351. DOI: 10.1007/s11270-008-9883-9.

  • [16] Duran C Ozdes D Gundogdu A Senturk HB. Kinetics and isotherm analysis of basic dyes adsorption onto almond shell (Prunus dulcis) as a low cost adsorbent. J Chem Eng Data. 2011;56:2136-2147. DOI: 10.1021/je101204j.

  • [17] Fathi MR Asfaram A Hadipour A Roosta M. Kinetics and thermodynamic studies for removal of acid blue 129 from aqueous solution by almond shell. J Environ Health Sci Eng. 2014;12:62. DOI: 10.1186/2052-336X-12-62.

  • [18] Hashemian S Salari K Yazdi ZA. Preparation of activated carbon from agricultural wastes (almond shell and orange peel) for adsorption of 2-pic from aqueous solution. J Industrial Eng Chem. 2014;20:1892-1900. DOI: 10.1016/j.jiec.2013.09.009.

  • [19] Wang XS Qin Y. Equilibrium sorption isotherms of Cu2+ on rice bran. Process Biochem. 2005;40:677-680. DOI: 10.1016/j.procbio.2004.01.043.

  • [20] Ajmal M Khan AH Ahmad S Ahmad A. Role of sawdust in the removal of copper(II) from industrial wastes. Water Res. 1998;32:3085-309. DOI: 10.1016/S0043-1354(98)00067-0.

  • [21] Goyal M Rattan VK Aggarwal D Bansal RC. Removal of copper from aqueous solutions by adsorption on activated carbons. Colloids Surf. 2001;190:229-238. DOI: 10.1016/S0927-7757(01)00656-2.

  • [22] Srivastava SK Tyagi R Pant N. Adsorption of heavy metal ions on carbonaceous material developed from the waste slurry generated in local fertilizer plants. Water Res. 1989;23(9):1161-1165. DOI: 10.1016/0043-1354(89)90160-7.

  • [23] El-Kamash AM Zaki AA Abed El Geleel M. Modeling batch kinetics and thermodynamics of zinc and cadmium ions removal from waste solutions using synthetic zeolite A. J Hazard Mater. 2005;127:211-220. DOI: 10.1016/j.jhazmat.2005.07.021.

  • [24] Paduraru C Tofan L Teodosiu C Bunia I Tudorachi N Toma O. Biosorption of zinc(II) on rapeseed waste: equilibrium studies and thermogravimetric investigations. Process Saf Environ Prot. 2015;94:18-28. DOI: 0.1016/j.psep.2014.12.003.

  • [25] Lee S Kwon O Yoo K Alorro RD. Removal of Zn from contaminated sediment by FeCl3 in HCl solution. Metals. 2015;5:1812-1820. DOI: 10.3390/met5041812.

  • [26] Giwa AA Abdulsalam KA Wewers F Oladipo MA. Biosorption of acid dye in single and multidye systems onto sawdust of locust bean (Parkia biglobosa) tree. J Chem. 2016; Article ID 6436039. DOI: 10.1155/2016/6436039.

  • [27] Aljeboreea AM Alshirifib AN Alkaim AF. Kinetics and equilibrium study for the adsorption of textile dyes on coconut shell activated carbon. Arab J Chem. 2014. DOI: 10.1016/j.arabjc.2014.01.020.

  • [28] Maheshwari U Mathesan B Gupta S. Efficient adsorbent for simultaneous removal of Cu(II) Zn(II) and Cr(VI): Kinetic thermodynamics and mass transfer mechanism. Process Saf Environ Protect. 2015;98:198-210. DOI: 10.1016/j.psep.2015.07.010.

  • [29] Subramani SE Thinakaran N. Isotherm kinetic and thermodynamic studies on the adsorption behaviour of textile dyes onto chitosan. Process Saf Environ Protect. 2017;106:1-10. DOI: 10.1016/j.psep.2016.11.024.

  • [30] Lagergren S. Zur theorie der sogenannten adsorption geloster stoffe. Kungliga Svenska Vetenskapsakademiens. (On the theory of the so-called adsorption of dissolved substances. Kungliga Svenska Vetenskaps Academy). Handlingar Band. 1898;24(4):1-39.

  • [31] Zhang J Cai D Zhang G Cai C Zhang C Qiu G et al. Adsorption of methylene blue from aqueous solution onto multiporous palygorskite modified by ion beam bombardment: Effect of contact time temperature pH and ionic strength. Appl Clay Sci. 2013;83-84:137-143. DOI: 10.1016/j.clay.2013.08.033.

  • [32] Ho YS McKay G. The kinetics of sorption of basic dyes from aqueous solution by sphagnum moss peat. Can J Chem Eng. 1998;76(4):822-827. DOI: 10.1002/cjce.5450760419.

  • [33] Weber WJ Morris JC. Kinetics of adsorption on carbon from solutions. Amer Soc Civil Engineers. 1963;89:31-60.

  • [34] Murugesan A Ravikumar L Selva Bala BV Kumar SP Vidhyadevi T Dnesh Kirupha S et al. Removal of Pb(II) Cu(II) and Cd(II) ions from aqueous solution using polyazomethineamides: equilibrium and kinetic approach. Desalination. 2011;271:199-208. DOI: 10.1016/j.desal.2010.12.029.

  • [35] Hameed BH. Equilibrium and kinetic studies of methyl violet sorption by agricultural waste. J Hazard Mater. 2008;154:204-212. DOI: 10.1016/j.jhazmat.2007.10.010.

  • [36] Wu FC Tseng RL Juang RS. Characteristics of Elovich equation used for the analysis of adsorption kinetics in dye chitosan systems. Chem Eng J. 2009;150:366-373. DOI: 10.1016/j.cej.2009.01.014.

  • [37] Bangham DH Burt FP. The behavior of gases in contact with glass surfaces. Proc Royal Soc London. Ser A: Math Phys Character. 1924;105:481-488. http://www.jstor.org/stable/94228.

  • [38] Fan T Liu Y Feng B Zeng G Yang C Zhou M et al. Biosorption of cadmium(II) zinc(II) and lead(II) by Penicillium simplicissimum: Isotherms kinetics and thermodynamics. J Hazard Mater. 2008;160:655-661. DOI: 10.1016/j.jhazmat.2008.03.038.

  • [39] Nuhoglu Y Malkoc E. Thermodynamic and kinetic studies for environmentally friendly Ni(II) biosorption using waste pomace of olive oil factory. Bioresour Technol. 2009;100:2375-2380. DOI: 10.1016/j.biortech.2008.11.016.

  • [40] Joo JH Hassan SHA Oh SE. Comparative study of biosorption of Zn2 by Pseudomonas aeruginosa and Bacillus cereus. Int Biodeterioration Biodegrad. 2010;64:734-741. DOI: 10.1016/j.ibiod.2010.08.007.

  • [41] Dotto GL Pinto LAA. Analysis of mass transfer kinetics in the biosorption of synthetic dyes onto Spirulina platensis nanoparticles. Biochem Eng J. 2012;68:85-90. DOI: 10.1016/j.bej.2012.07.010.

  • [42] Cardoso NF Lima EC Royer B Bach MV Dotto GL Pinto LAA Calvete T. Comparison of Spirulina platensis microalgae and commercial activated carbon as adsorbents for the removal of reactive red 120 dye from aqueous effluents. J Hazard Mater. 2012;241-242:146-153. DOI: 10.1016/j.jhazmat.2012.09.026.

  • [43] Kavitha D Namasivayam C. Recycling coir pith an agricultural solid waste for the removal of procion orange from wastewater. Dyes Pigm. 2007;74:237-248. DOI: 10.1016/j.dyepig.2006.01.040.

  • [44] Dursun YA. A comparative study on determination of the equilibrium kinetic and thermodynamic parameters of biosorption of copper(II) and lead(II) ions onto pretreated Aspergillus niger. Biochem Eng. 2006;28:187-195. DOI: 10.1016/j.bej.2005.11.003.

  • [45] Yanping J Yunying W Julin C Yunhai W. Adsorption behavior of Cr(VI) Ni(II) and Co(II) onto zeolite 13x. Desalin Water Treat. 2015;54(2):511-524. DOI: 10.1080/19443994.2014.883333.

  • [46] Brunader S. The Adsorption of Gases and Vapors. Vol. 1. London: Oxford University Press; 1942.

  • [47] Wang S Li H. Dye adsorption on unburned carbon: Kinetics and equilibrium. J Hazard Mater. 2005;126:71-77. DOI: 10.1016/j.jhazmat.2005.05.049.

  • [48] Langmuir I. The adsorption of gases on mica and platinum. J Am Chem Soc. 1918;40:1361-1403.

  • [49] Freundlich H. Colloid and Capillary Chemistry. London: Metheun; 1926.

  • [50] Thomas JM Thomas WJ. Introduction to the Principles of Heterrogeneous Catalysis. New York: Academic Press; 1967.

  • [51] Dubinin MM Radushkevich LV. Proc Acad Sci Physico Chem. 1947;550:331-340.

  • [52] Hasany SM Chaudhary MH. Sorption potential of Hare River sand for the removal of antimony from acidic aqueous solution. Appl Radiation Isotopes. 1996;47:467-471. DOI: 10.1016/0969-8043(95)00310-X.

  • [53] Onyang MS Kojima Y Aoyi O Bernardo EC Matsuda H. Adsorption equilibrium modeling and solution chemistry dependence of fluoride removal from water by trivalent-cation-exchanged zeolite F-9. J Colloid Interface Sci. 2004;279:341-350. DOI: 10.1016/j.jcis.2004.06.038.

  • [54] Temkin MJ Phyzev V. Recent modifications to Langmuir isotherms. Acta Physicochim USSR. 1940;12:217-222.

  • [55] Aharoni C Ungarish M. Kinetics of activated chemisorption. Part 2-Theoretical models. J Chem Soc Faraday Trans. 1977;73:456-464. DOI: 10.1039/F19777300456.

  • [56] Sekar M Sakthi V Rengaraj S. Kinetics and equilibrium adsorption study of lead(II) onto activated carbon prepared from coconut shell. Colloid Interface Sci. 2004;279:307-313. DOI: 10.1016/j.jcis.2004.06.042.

  • [57] Harkıns WD Jura G. Surfaces of Solids. XIII. A Vapor Adsorption Method for the Determination of the Area of a Solid without the Assumption of a Molecular Area and the Areas Occupied by Nitrogen and Other Molecules on the Surface of a Solid. J Chem Phys. 1944;66(8):1366-1373. DOI: 10.1021/ja01236a048.

  • [58] Hameed B Mahmoud D Ahmad A. Sorption of basic dye from aqueous solution by pomelo (Citrus grandis) peel in a batch system. Colloids Surfaces A: Physicochem Eng Aspects. 2008;316(1):78-84. DOI: 10.1016/j.colsurfa.2007.08.033.

  • [59] Aksu Z Kabasakal E. Batch adsorption of 24-dichlorophenoxy-acetic acid (24-D) from aqueous solution by granular activated carbon. Sep Purif Technol. 2004;35:223-240. DOI: 10.1016/S1383-5866(03)00144-8.

  • [60] Shah J Jan MR Haq A Zeeshan M. Equilibrium kinetic and thermodynamic studies for sorption of Ni(II) from aqueous solution using formaldehyde treated waste tea leaves. J Saudi Chem Soc. 2015;19(3):301-310. DOI: 10.1016/j.jscs.2012.04.004.

  • [61] Kulkarni RM Shetty KV Srinikethan G. Cadmium(II) and nickel(II) biosorption by Bacillus laterosporus (MTCC 1628). J Taiwan Inst Chem Engineers. 2014;45(4):1628-1635. DOI: 10.1016/j.jtice.2013.11.006.

  • [62] Ahmad MF Hayda S Quraishi TA. Enhancement of biosorption of zinc ions from aqueous solution by immobilized Candida utilis and Candida tropicalis cells. Int Biodeterioration Biodegrad. 2013;83:119-128. DOI: 10.1016/j.ibiod.2013.04.016.

  • [63] Argun ME Dursun S Ozdemir C Karatas M. Heavy metal adsorption by modified oak sawdust: thermodynamics and kinetics. J Hazard Mater. 2007;141:77-85. DOI: 10.1016/j.jhazmat.2006.06.095.

  • [64] Shukla SR Pai RS. Adsorption of Cu(II) Ni(II) and Zn(II) on dye loaded ground- nut shells and sawdust. Sep Purif Technol. 2005;43:1-8. DOI: 10.1016/j.seppur.2004.09.003.

  • [65] Putra WP Kamari A Yusoff SNM Ishak CF Mohamed A Hashim N et al. Biosorption of Cu(II) Pb(II) and Zn(II) ions from aqueous solutions using selected waste materials: Adsorption and characterisation studies. J Encapsulation Adsorption Sci. 2014;4:25-35. DOI: 10.4236/jeas.2014.41004.

  • [66] Hossain MA Ngo HH Guo WS Setiati T. Adsorption and desorption of copper(II) ions onto garden grass. Bioresour Technol. 2012;121:386-395. DOI: 10.1016/j.biortech.2012.06.119.

  • [67] Osman HE Badwy RK Ahmad HF. Usage of some agricultural by-products in the removal of some heavy metals from industrial wastewater. J Phytol. 2010;2:51-62. http://scienceflora.org/journals/index.php/jp/article/viewFile/2100/2079.

  • [68] Qian Q Mochidzuki K Fujii T Sakoda A. Removal of copper from aqueous solution using iron containing adsorbents derived from methane fermentation sludge. J Hazard Mater. 2009;172:1137-1144. DOI: 10.1016/j.jhazmat.2009.07.107.

  • [69] Acheampong MA Pakshirajan K Annachhatre AP Lens PNL. Removal of Cu(II) by biosorption onto coconut shell in fixed-bed column systems. J Ind Eng Chem. 2013;19:841-848. DOI: 10.1016/j.jiec.2012.10.029.

  • [70] Komy ZR Abdelraheem WH Ismail NM. Biosorption of Cu2+ by Eichhornia crassipes: physicochemical characterization biosorption modeling and mechanism. J King Saud Univ. 2013;25:47-56. DOI: 10.1016/j.jksus.2012.04.002

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 1.467
5-year IMPACT FACTOR: 1.226

CiteScore 2018: 1.47

SCImago Journal Rank (SJR) 2018: 0.352
Source Normalized Impact per Paper (SNIP) 2018: 0.907

Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 438 194 7
PDF Downloads 278 173 11