Potential Use of Alluvial Groundwater for Irrigation in Arid Zones - Mhamid Oasis (S Morocco)

Open access


In arid zones, the availability of fresh water is usually very limited because of high salinity, which greatly limits their use for irrigation purposes. High mineralization of water used for irrigation leads to increased soil salinity. The aim of the study was to examine the potential use of alluvial groundwater for irrigation in arid zones. The works were conducted in the Middle Draa Valley in southern Morocco (the Mhamid Oasis) in October 2015. Water samples of alluvial groundwater were collected for laboratory analysis from 42 wells located in the oasis. In order to determine the possibility to use the water for irrigation purposes, the Sodium Adsorption Ratio (SAR), sodium percentage (%Na), permeability index (PI), Kelly’s ratio (KR), magnesium hazards (MH) and electrical conductivity (EC) were assessed. EC values, exceeding 3000 μS·cm-1 in all the samples, classify the water as unsuitable for irrigation. MH and the KR indexes show that 30% of water samples represent levels making them unsuitable for irrigation. SAR confirms the very high degree of susceptibility of the analyzed waters to salinity hazard. The PI index of these waters is moderate, however in terms of sodium content they can be deemed suitable for irrigation purposes. It has been found that even within a small area of the oasis, a very large differentiation in the alluvial groundwater suitability for irrigation purposes occurs.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] El Mandour A El Yaouti CF Fakir CY Zarhloule CY Benavente CJ. Evolution of groundwater salinity in the unconfined aquifer of Bou-Areg Northeastern Mediterranean coast Morocco. Environ Geol. 2008;54:491-503. DOI: 10.1007/s00254-007-0842-3.

  • [2] Kudoda AM Abdalla OAE. Hydrochemical characterization of the main aquifers in Khartoum the capital city of Sudan. Environ Earth Sci. 2015;74:4771-4786. DOI: 10.1007/s12665-015-4464-x.

  • [3] Ammar BS Taupin JD Zouari K Khouatmia M. Identifying recharge and salinization sources of groundwater in the Oussja Ghar el Melah plain (northeast Tunisia) using geochemical tools and environmental isotopes. Environ Earth Sci. 2016;75:606. DOI: 10.1007/s12665-016-5431-x.

  • [4] Fakharian K Narany TS. Multidisciplinary approach to evaluate groundwater salinity in Saveh Plain Iran. Environ Earth Sci. 2016;75:624. DOI: 10.1007/s12665-015-5104-1.

  • [5] Wilcox LV. Classification and Use of Irrigation Water. USDA; 1955. https://www.ars.usda.gov/arsuserfiles/20360500/pdf_pubs/P0192.pdf.

  • [6] Deshpande SM Ather KR. Evaluation of groundwater quality.and its suitability for drinking and agriculture use in parts of Vaijapur District Aurangabad MS India. Res J Chem Sci. 2012;2(1):25-31. http://www.isca.in/rjcs/Archives/v2/i1/04.ISCA-RJCS-2011-216_Done.php.

  • [7] Alaya BM Saidi S Zemni T Zargouni F. Suitability assessment of deep groundwater for drinking and irrigation use in the Djeffara aquifers (Northern Gabes south-eastern Tunisia). Environ Earth Sci. 2014;71(8):3387-3421. DOI: 10.1007/s12665-013-2729-9.

  • [8] Ghazaryan K Chen Y. Hydrochemical assessment of surface water for irrigation purposes and its influence on soil salinity in Tikanlik oasis China. Environ Earth Sci. 2016;75:383. DOI: 10.1007/s12665-016-5287-0.

  • [9] Houatmia F Azouzi R Charef A Bedir M. Assessment of groundwater quality for irrigation and drinking purposes and identification of hydrogeochemical mechanisms evolution in Northeastern Tunisia. Environ Earth Sci. 2016;75:746. DOI: 10.1007/s12665-016-5441-8.

  • [10] Wang YG Li Y Xiao DN. Catchment scale spatial variability of soil salt content in agricultural oasis Northwest China. Environ Geol. 2008;56:439-446. DOI: 10.1007/s00254-007-1181-0.b.

  • [11] Ghassemi F Jakeman AJ Nix HA. Salinisation of Land and Water Resources: Human Causes Extent Management and Case Studies. Wallingford: CAB International; 1995; 526 p.

  • [12] Ahmed MA Abdel Samie SG Badawy HA. Factors controlling mechanisms of groundwater salinization and hydrogeochemical processes in the Quaternary aquifer of the Eastern Nile Delta Egypt. Environ Earth Sci. 2013;68:369-394. DOI: 10.1007/s12665-012-1744-6.

  • [13] El Maghraby MMS. Geochemical and isotopic evidence of seawater intrusion into the shallow pleistocene coastal aquifer West Alexandria Egypt. Life Sci J. 2014;11(7):749-762. http://www.lifesciencesite.com/lsj/life1107/110_25356life110714_749_762.pdf.

  • [14] Kijne JW. Water and salinity balances for irrigated agriculture in Pakistan. Research Report 6. Colombo Sri Lanka: International Irrigation Management Institute (IIMI); 1996. http://www.iwmi.cgiar.org/Publications/IWMI_Research_Reports/PDF/pub006/REPORT06.PDF.

  • [15] Ma JZ Wang XS Edmunds WM. The characteristics of ground-water resources and their changes under the impacts of human activity in the arid Northwest China - a case study of the Shiyang River Basin. J Arid Environ. 2005;61:277-295. DOI: 10.1016/j.jaridenv.2004.07.014.

  • [16] Bouchaou L Michelot JL Vengosh A Hsissou Y Qurtobi M Gaye CB et al. Application of multiple isotopic and geochemical tracers for investigation of recharge salinization and residence time of water in the Souss-Massa aquifer Southwest of Morocco. J Hydrol. 2008;352:267-287. DOI: 10.1016/j.jhydrol.2008.01.022.

  • [17] Warner N Lgourna Z Bouchaou L Boutaleb S Tagma T Hsaissoune M et al. Integration of geochemical and isotopic tracers for elucidating water sources and salinization of shallow aquifers in the sub-Saharan Drâa Basin Morocco. Appl Geochem. 2013;34:140-151. DOI: 10.1016/j.apgeochem.2013.03.005.

  • [18] Dłużewski M Krzemień K. Physical and geographical characteristics of Coude du Dra region. In: Dłużewski M editor. Modern Evolution of the Natural Environment of the Coude du Dra Region (Morocco) and its Impact on the Human Living Conditions. Warszawa: Academic Publisher Dialog; 2003:11-44.

  • [19] Sobczak K. Changes in the environment and migration in the south Morocco - the example of Mhamid oasis. Miscellanea Geographica Warszawa: Uniwersytet Warszawski; 2008;13:239-250.

  • [20] Richards LA. Diagnosis and Improvement of Saline and Alkali Soils. Handbook 60. Washington DC: US Dept. of Agriculture; 1954;160 pp.

  • [21] Ragunath HM. Groundwater 2nd Ed. New Delhi: Wiley Eastern Ltd; 1987. https://www.ars.usda.gov/ARSUserFiles/20360500/hb60_pdf/hb60complete.pdf.

  • [22] Kelly WP. Use of saline irrigation water. Soil Sci. 1963; 95(4):355-391. http://journals.lww.com/soilsci/Citation/1963/06000/USE_OF_SALINE_IRRIGATION_WATER_.3.aspx.

  • [23] Flowers TJ. Improving crop salt tolerance. J Exp Bot. 2004;55(396):307-319. DOI: 10.1093/jxb/erh003.

  • [24] Mer RK Prajith PK Pandya DH Pandey A. Effect of salts on germination of seeds and growth of young plants of Hordeum vulgare Tricticum aestivum Cicer arietinum and Brassica juncea. J Agron Crop Sci. 2000;185:209-217. DOI: 10.1046/j.1439-037x.2000.00423.x.

  • [25] Martinez V Creda A. Nitrate reductase activity in tomato and cucumber leaves as influence by NaCl and N source. J Plant Nutr. 1989;12:1335-1350. DOI: 10.1080/01904168909364040.

  • [26] Zhu JK. Plant salt tolerance. Trends Plant Sci. 2001;6(2):66-71. DOI: 10.1016/S1360-1385(00)01838-0.

  • [27] Jungklang J Usui K Masumoto H. Differences in physiological responses to NaCl between salt-tolerant Sesbania rostrata Brem. & Oberm. and non-tolerant Phaseolus vulgaris L. Weed Biology Manage. 2003;(3):21-27. DOI: 10.1046/j.1445-6664.2003.00077.x.

  • [28] Ashraf M. Some important physiological selection criteria for salt tolerance in plants. Flora - Morphol Distribut Functional Ecology Plants. 2004;199(5):361-376. DOI: 10.1078/0367-2530-00165.

  • [29] Parida AK Das AB. Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf. 2005;60(3):324-49. DOI: 10.1016/j.ecoenv.2004.06.010.

  • [30] Wu J Qian H Fang Y. Assessment of soil salinization based on a low-cost method and its influencing factors in a semiarid agricultural area northwest China. Environ Earth Sci. 2014;71:3465-3475. DOI: 10.1007/s12665-013-2736-x.

  • [31] Omar SA Abdel Sater MH Khallil AM Abd Alla MH. Growth and enzyme activity of fungi and bacteria in soil salinized with sodium chloride. Folia Microbiol. 1994;39:23-28. DOI: 10.1007/BF02814524.

Journal information
Impact Factor

IMPACT FACTOR 2018: 1.467
5-year IMPACT FACTOR: 1.226

CiteScore 2018: 1.47

SCImago Journal Rank (SJR) 2018: 0.352
Source Normalized Impact per Paper (SNIP) 2018: 0.907

Cited By
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 274 127 8
PDF Downloads 162 102 14