The Influence of Natural and Model Forms of Humic Acids on the Dynamic Parameters of Model Membranes

Open access


In this paper the influence of humic acid concentrations extracted from Histosols (HA-A) and their model forms (HA-B) separated from humic substances commercially produced by Carl Roth GmbH + Co.KG on the dynamic properties of liposome membranes was determined. Differences in the quality of the humic acids (HA-A and HA-B) were determined by the 1HNMR and FTIR methods. Liposomes from the sonication of egg yolk lecithin (EYL) in an aqueous solution and synthetic Dipalmitoylphosphatidylcholine (DPPC) were used. Fluidity of liposome membranes was determined by the EPR technique with spin probes (TEMPO, 16DOIXYL). The electrical parameters of membranes were found using a Keithley 6517 electrometer. Our study showed significant differences in the influence of HA-A and HA-B on the membranes. In the bilayer membranes of the liposomes of HA-A admixture there was slightly more stiffening of the interior of the membrane in comparison to HA-B. A similar effect was observed in the surface layer of the liposome membranes. This difference is particularly evident for DPPC liposomes, however, the EYL liposomes admixture with HA-B slightly increased the fluidity of the surface layer. Electrical study confirmed this effect. The study shows that natural and model forms of humic acids differ in their effects on the activity of tested membrane models. The strong differences in the interaction of HA-A and HA-B on parameter F in DPPC liposomes can be result from the transport of humic acids connected to the metal ions inside the membranes (xenobiotics present in the environment).

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Barancikova G Makovnikokova J. The influence of soil humic acid quality on sorption and mobility of heavy metals. Plant Soil Environ. 2003;49:565-571.

  • [2] Grassi M Rosa M. Humic acids of different origin as modifiers of cadmium-ion chemistry: A spectroscopic approach to structural properties and reactivity. Inorg Chim Acta. 2010;363:495-503. DOI: 10.1016/j.ica.2009.07.033.

  • [3] Jamroz E. Właściwości próchnic gleb leśnych pod zaroślami kosodrzewiny w Rezerwacie Śnieżnik Kłodzki [Properties of soil organic matter in the forest soils under mountain dwarf pine in the Snieznik Klodzki Reserve]. Sylwan. 2012;156(11):825-832.

  • [4]

  • [5] Feller Ch Brossard M Chen Y Landa ER Trichet J. Selected pioneering works on humus in soils and sediments during the 20th century: A retrospective look from the International Humic Substances Society view. Phys Chem Earth. 2010;35:903-912. DOI: 10.1016/j.pce.2010.10.004.

  • [6] Filella M Hummel W. Trace element complexation by humic substances: issues related to quality assurance. Accred Qual Assur. 2011;16:215-223. DOI: 10.1007/s00769-010-0716-3.

  • [7] Gonzalez Perez M Martin-Neto L Saab SC Novotny EH Milori DMBP Bagnato VS et al. Characterization of humic acids from Brazilian Oxisol under different tillage systems by EPR 13CNMR FTIR and fluorescence spectroscopy. Geoderma. 2004;118:181-190. DOI: 10.1016/S0016-7061(03)00192-7.

  • [8] Jerzykiewicz M. The effect of Hg(II) ions on the free radicals of humic substances and their model compound. Chemosphere. 2013;92/4:445-450. DOI: 10.1016/j.chemosphere.2013.01.048.

  • [9] Filip Z Kubat J. Microbial utilization and transformation of humic substances extracted from soils of long-term field experiments. Eur J Soil Biol. 2001;37:167-174. DOI: 10.1016/S1164-5563(01)01080-9.

  • [10] Man D. Fluidity of liposome membranes doped with organic tin compounds: ESR study. J Liposome Res. 2008;182:225-234. DOI: 10.1080/08982100802309461.

  • [11] Shimshick EJ McConnell HM. Lateral phase separation in phospholipid membranes. Biochemistry. 1973;12:2351-2360.

  • [12] Hagelueken G Duthie FG Florin N Schubert E Schiemann O. Expression purification and spin labelling of the ferrous iron transporter FeoB from Escherichia coli BL21 for EPR studies. Protein Express Purificat. 2015;114:30-36. DOI: 10.1016/j.pep.2015.05.014.

  • [13] Petelska AD Naumowicz M Figaszewski ZA. The influence of pH on Phosphatidylethanolamine monolayer at the air/aqueous solution interface. Cell Biochem Biophys. 2013;65:229-235. DOI: 10.1007/s12013-012-9424-4.

  • [14] Choudhry GG. Humic Substances: Structural Photophysical Photochemical and Free Radical Aspects and Interactions with Environmental Chemicals. New York: Gordon and Breach Science Publishers Inc. 1984.

  • [15] Conclin Jr AR. Introduction to Soil Chemistry. New Jersey: John Wiley & Sons Inc.; 2014:274-287. DOI: 10.1002/0471728225.

  • [16] Marita JM Hatfield JRRD Chapple C. NMR characterization of lignins in Arabidopsis altered in the activity of ferulate 5-hydroxylase. Proc Natl Acad Sci USA. 1999;96(22):12328-12332. DOI: 10.1073/pnas.96.22.12328.

  • [17] Schnitzer M Khan SU. Soil Organic Matter. Amsterdam: Elsevier Sc. Publ. Co; 1978.

  • [18] Man D Pisarek I Braczkowski M. The impact of humic substances on the liposome structures: ESR method. Nukleonika. 2013;58(3):439–442.

  • [19] Singleton WS Gray MS Brown ML White JL. Chromatographically homogeneous lecitin from egg phospholipids. J Am Oil Chem Soc. 1965;42:53-56.

  • [20] Hemminga MA. Interpretation of ESR and saturation transfer ESR spectra of spin labeled lipids and membranes. Chem Phys Lipids. 1973;32:323-383.

  • [21] Stuart BH. Infrared Spectroscopy: Fundamentals and Applications. New Jersey: John Wiley Sons. Ltd.; 2004. DOI: 10.1002/0470011149.

  • [22] Rodríguez FJ Schlenger P García-Valverde M. Monitoring changes in the structure and properties of humic substances following ozonation using UV-Vis FTIR and 1H NMR techniques. Sci Total Environ. 2016; 541:623-637.

  • [23] Man D Pisarek I Braczkowski M Pytel B Olchawa R. The impact of humic substances on the liposome structures: ESR method. J Liposome Res. 2014;24:106-112. DOI: 10.3109/08982104.2013.839998.

  • [24] Yasuda S Hamaguchi E Asano K. Ready chemical conversion of acid hydrolysis lignin into water-soluble lignosulfonates. III. Successive treatment of acid hydrolysis lignin and lignin model compounds by phenolation and aryl-sulfonation. J Wood Sci. 1999;45:245-249. DOI: 10.1007/BF01177733.

  • [25] Podolak M Engel G Man D. Effect of organic compounds of tin on the electric properties of model membranes. Zeit Naturforsch. 2006;61c:453-457.

  • [26] Christoforidis KC Un S Deligiannakis Y. Effect of metal ions on the indigenous radicals of humic acids: high field Electron Paramagnetic Resonance study. Environ Sci Technol. 2010;44:7011-7016. DOI: 10.1021/es101708f.

  • [27] Witwicki M Jerzykiewicz M Jaszewski A Jezierska J Ozarowski A. Influence of Pb(II) ions on the EPR properties of the semiquinone radicals of humic acids and model compounds: High field EPR and relativistic DFT studies. J Phys Chem A. 2009;113(51):14115-14122. DOI: 10.1021/jp906289d.

  • [28] Jajić I Wiśniewska-Becker A Sarna T Jemioła-Rzemińska M Strzałka K. EPR spin labeling measurements of thylakoid membrane fluidity during barley leaf senescence. J Plant Phys. 2014;171:12:1046-1053. DOI: 10.1016/j.jplph.2014.03.017.

  • [29] Alloway BJ. Heavy Metals in Soils. Dodrecht: Springer Science Business Media; 2013. DOI: 10.1007/978-94-007-4470-7.

Journal information
Impact Factor

IMPACT FACTOR 2018: 1.467
5-year IMPACT FACTOR: 1.226

CiteScore 2018: 1.47

SCImago Journal Rank (SJR) 2018: 0.352
Source Normalized Impact per Paper (SNIP) 2018: 0.907

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 247 92 1
PDF Downloads 106 64 1