Variability of Oxygen-Thermal Conditions in Selected Lakes in Poland

Abstract

Dissolved oxygen in water (DO) is one of the primary parameters determining its quality. It remains in close relation to water temperature. The article presents results of DO and water temperature measurements performed for five stratified lakes in Poland in the years 2007-2014. The measurements were performed with monthly frequency in the summer half-year (May-October) in the deepest place of each of the lakes. The compared data show the complex character of the course of both of the parameters. The analysis of depth profiles revealed the prevalence of a decreasing tendency, or no tendency was recorded - both in the case of DO and water temperature. Due to the incoherent character of the water in the case of stratified lakes, a more detailed comparison was performed, referring to changes occurring in zones developed during summer stratification. It was determined that the temperature of the epilimnion was directly dependent on air temperature, and in all cases it showed an increasing tendency. Simultaneously, along with an increase in temperature, in the majority of cases, DO concentration in the zone decreased. In reference to the waters of the hypolimnion, increasing, decreasing, and no tendencies were recorded. The above distribution is determined by individual factors of the lakes - morphometry, trophic status, groundwater alimentation, etc. Several years of measurements of DO and water temperature in depth profiles of several lakes in Poland constitute valuable information on the current transformations of the environment of this part of Europe. In the future, the information can provide the basis for long-term analyses over the next decades, enriching global knowledge on those parameters of key importance for water ecosystems.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Terzhevik A, Golosov S, Palshin N, Mitrokhov A, Zdorovennov R, Zdorovennova G, et al. Some features of the thermal and dissolved oxygen structure in boreal, shallow ice-covered Lake Vendyurskoe, Russia. Aquat Ecol. 2009;43(3):617-627. DOI: 10.1007/s10452-009-9288-x.

  • [2] Borowiak D, Nowiński K, Barańczuk J, Marszelewski W, Skowron R, Solarczyk A. Relationship between areal hypolimnetic oxygen depletion rate and the trophic state of five lakes in northern Poland. Limnol Rev. 2011;11(4):135-142. DOI: 10.2478/v10194-011-0035-z.

  • [3] Williams RJ, Boorman DB. Modelling in-stream temperature and dissolved oxygen at sub-daily time steps: An application to the River Kennet, UK. Sci Total Environ. 2012;423:104-110. DOI: 10.1016/j.scitotenv.2012.01.054.

  • [4] Feuchtmayr H, Moran R, Hatton K, Connor L, Heyes T, Moss B, et al. Global warming and eutrophication: Effects on water chemistry and autotrophic communities in experimental hypertrophic shallow lake mesocosms. J Appl Ecol. 2009;46(3):713-723. DOI: 10.1111/j.1365-2664.2009.01644.x.

  • [5] Sereda J, Bogard M, Hudson J, Helps D, Dessouki T. Climate warming and the onset of salinization: Rapid changes in the limnology of two northern plains lakes. Limnologica. 2011;41(1):1-9. DOI: 10.1016/j.limno.2010.03.002.

  • [6] Simčič T, Germ M. Increased temperature due to global warming alters the respiratory potential in aquatic organisms from an oligotrophic lake. Int Rev Hydrobiol. 2010;95(4-5):370-382. DOI: 10.1002/iroh.201011213.

  • [7] Wojtal-Frankiewicz A. The effects of global warming on Daphnia spp. population dynamics: a review. Aquat Ecol. 2012;46:37-53. DOI: 10.1007/s10452-011-9380-x.

  • [8] Kao YC, Madenjian CP, Bunnell DB, Lofgren BM, Perroud M. Temperature effects induced by climate change on the growth and consumption by salmonines in Lakes Michigan and Huron. Environ Biol Fish. 2015;98(4):1089-1104. DOI: 10.1007/s10641-014-0352-6.

  • [9] Choiński A, Ptak M, Skowron R, Strzelczak A. Changes in ice phenology on polish lakes from 1961-2010 related to location and morphometry. Limnologica. 2015;53:42-49. DOI: 10.1016/j.limno.2015.05.005.

  • [10] Ejankowski W, Lenard T. Climate driven changes in the submerged macrophyte and phytoplankton community in a hard water Lake, Limnologica. 2015;52:59-66. DOI: 10.1016/j.limno.2015.03.003.

  • [11] Pełechata A, Pełechaty M, Pukacz A. Winter temperature and shifts in phytoplankton assemblages in a small Chara-lake. Aquat Bot. 2015;124:10-18. DOI: 10.1016/j.aquabot.2015.03.001.

  • [12] Yue S, Pilon P, Phinney B, Cavadias G. The influence of autocorrelation on the ability to detect trend in hydrological series. Hydrol Process. 2002;16(9):1807-1829. DOI: 10.1002/hyp.1095.

  • [13] Bronaugh D, Werner A. Zhang + Yue-Pilon trends package. R package version 0.10-1. Pacific Climate Impacts Consortium; 2013. https://CRAN.R-project.org/package=zyp.

  • [14] Wrzesiński D, Choiński A, Ptak M. Effect of the North Atlantic Oscillation on the thermal characteristics of lakes in Poland. Acta Geophys. 2015;63(3):863-883. DOI: 10.1515/acgeo-2015-0001.

  • [15] Nōges T, Tuvikene L, Nōges P. Contemporary trends of temperature, nutrient loading, and water quality in large Lakes Peipsi and Vōrtsjärv, Estonia. Aquat Ecosyst Health. 2010;(13):143-153. DOI: 10.1080/14634981003788987.

  • [16] Naumenko MA, Guzivaty VV, Karetnikov SG. Climatic trends of the water surface temperature in Lake Ladoga during ice-free periods. Dokl Earth Sci. 2006;409(5):750-753. DOI: 10.1134/S1028334X06050163.

  • [17] George DG, Hewitt DP, Jennings E, Allott N, McGinnity P. The impact of changes in the weather on the surface temperatures of Windermere (UK) and Lough Feeagh (Ireland). In: Water in Celtic countries: quantity, quality and climatic variability. Proc Fourth Inter-Celtic Colloquium on Hydrology and Management of Water Resources, Guimaraes, Portugal, July 2005; IAHS Publications. 2007;310:86-93. http://iahs.info/uploads/dms/13792.13-86-93-IC310-22-Glen-George.pdf.

  • [18] Adrian R, O’Reilly CM, Zagarese H, Baines SB, Hessen DO, Keller W, et al. Lakes as sentinels of climate change. Limnol Oceanogr. 2009;54(6(2)):2283-2297. DOI: 10.4319/lo.2009.54.6_part_2.2283.

  • [19] Hampton SE, Izmest’eva LR, Moore MV, Katz SL, Dennis B, Silow EA. Sixty years of environmental change in the world’s largest freshwater lake - Lake Baikal, Siberia. Glob Change Biol. 2008;(14):1947-1958. DOI: 10.1111/j.1365-2486.2008.01616.x.

  • [20] Huang A, Rao YR, Zhang W. On recent trends in atmospheric and limnological variables in Lake Ontario. J Climate. 2012;25(17):5807-5816. DOI: 10.1175/JCLI-D-11-00495.1.

  • [21] Skowron R. Zróżnicowanie i zmienność wybranych elementów reżimu termicznego wody w jeziorach na niżu polskim (The Differentation and the Changeability of Choin Elements of the Thermal Regime of Water in Lakes on Polish Lowland). Toruń: Wyd Nauk UMK; 2011.

  • [22] Zhang Y. Effect of climate warming on lake thermal and dissolved oxygen stratifications: a review. Adv Water Sci. 2015;26(1):130-139. DOI: 10.14042/J.CNKI.32.1309.2015.01.017.

  • [23] Antonopoulos VZ, Gianniou SK. Simulation of water temperature and dissolved oxygen distribution in Lake Vegoritis, Greece. Ecol Model. 2003;160:39-53. DOI: 10.1016/S0304-3800(02)00286-7.

  • [24] Marszelewski W. Zmiany koncentracji tlenu w jeziorach Pojezierza Mazurskiego (Changes in oxygen concentrations in the Mazurian Lakeland). In: Wpływ antropopresji na jeziora. Choinski A, editor. Poznań-Bydgoszcz: Wyd. Homini; 1997.

  • [25] Poleszczuk G, Svobodová Z, Bucior-Kwaczyńska A, Miller T. Turkusowe Lake (Wolin Island, Poland) - surface waters quality changes in years 1986-2010. Ecol Chem Eng S. 2014;21(2):201-214. DOI: 10.2478/eces-2014-0016.

  • [26] Sidoruk M, Potasznik A. Spatial distribution of lead, zinc and chromium in the bottom deposits of Lake Sunia. Ecol Chem Eng S. 2015;22(1):243-253. DOI: 10.1515/eces-2015-0014.

  • [27] Sobczyński T, Joniak T. Co zagraża ekosystemowi Jeziora Góreckiego? (What threatens the ecosystem of Lake Góreckie?) In: Walna B, Kaczmarek L, Lorenc M, Dondajewska R, editors. Wielkopolski Park Narodowy w badaniach przyrodniczych, Poznań-Jeziory: Uniwersytet im. A. Mickiewicza w Poznaniu. Stacja Ekologiczna w Jeziorach; 2009.

  • [28] Biedka P. Sezonowe zmiany stężenia tlenu i potencjału oksydoredukcyjnego w hypolimnionach wybranych jezior Pojezierza Suwalsko-Augustowskiego (Seasonal changes of hypolimnetic oxygen concentration and redox potential in selected lakes of Suwalsko-Augustowskie Lakeland). Infrastrukt Ekol Terenów Wiejskich. 2012;3(1):225-232. bwmeta1.element.agro-10c698a3-f124-4ec1-856e-015ae4744a05.

  • [29] Arnott SE, Keller B, Dillon PJ, Yan N, Paterson M, Findlay D. Using temporal coherence to determine the response to climate change in boreal shield lakes. Environ Monit Assess. 2003;88:365-388. DOI: 10.1023/A:1025537628078.

  • [30] Gerten D, Adrian R. Differences in the persistency of the North Atlantic Oscillation signal among lakes. Limnol Oceanogr. 2001;46(2):448-455. DOI: 10.4319/lo.2001.46.2.0448.

OPEN ACCESS

Journal + Issues

Search