Impact of Use of Chemical Transformation Modules in Calpuff on the Results of Air Dispersion Modelling

Open access

Abstract

Assessment of the impact on air quality for combustion sources should be carried out using advanced modelling systems with chemical transformation modules taken into account, especially for the facilities characterized by significant emission of gaseous air pollutants (including SO2). This approach increases the reliability of the obtained evaluation results by modelling the formation of secondary inorganic aerosol (SIA) in the air which can substantially contribute to PM10. This paper assesses in this regard selected chemical transformation modules (MESOPUFF, RIVAD/ARM3, ISORROPIA/RIVAD) available in the CALPUFF model (v. 6.42) and its application in the atmospheric dispersion modelling of air emissions from a coal-fired large combustion plant (LCP) not equipped with a flue gas desulphurization (FGD) system. It has been proven that consideration an additional mechanism of secondary sulfate aerosol formation in aqueous phase in the ISORROPIA/RIVAD module (AQUA option) causes a significant increase in the annual average concentration of PM10 in the air compared to the other considered options, along with the calculation variant which excludes chemical transformation mechanisms. Type of the selected chemical transformation module has no significant effect on the results of modelled NO, NO2 and NOx concentrations in the air. However, it can lead to different SO2 results, especially for annual averaged, and in some points, for the hourly averaged concentrations.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Hanna SR Schulman LL Paine RJ Pleim JE Baer M. Development and evaluation of the offshore and coastal dispersion model. J Air Pollut Control Assoc. 1985;35(10):1039-1047. DOI: 10.1080/00022470.1985.10466003.

  • [2] Steven PG. CTDMPLUS: A Dispersion model for sources near complex topography. Part I: Technical formulations. J Appl Meteorol. 1992;31(7):633-645. DOI: 10.1175/1520-04501992031<0633:CADMFS>2.0.CO;2.

  • [3] Paumier JO Burns DJ Perry SG. CTDMPLUS: A dispersion model for sources near complex topography. Part II: Performance characteristics. J Appl Meteorol. 1992;31(7):646-660. DOI: 10.1175/1520-04501992031<0646:CADMFS>2.0.CO;2.

  • [4] US EPA. User’s guide for the Industrial Source Complex (ISC3) Dispersion Models: Volume II - Description of Model Algorithms. Tech. Rep. EPA-454/B-95-003b. Office of Air Quality Planning and Standards Emissions Monitoring and Analysis Division Research Triangle Park NC; 1995. https://www.epa.gov/scram001/userg/regmod/isc3v2.pdf.

  • [5] Janicke U Janicke L. Lagrangian particle modelling for regulatory purposes - a survey of recent developments in Germany. 11th International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes. 2004:109-113. http://www.harmo.org/conferences/proceedings/_Cambridge/publishedSections/Op109-113.pdf.

  • [6] Cimorelli AJ Perry SG Venkatram A Weil JC Paine RJ Wilson RB et al. AERMOD: A dispersion model for industrial source applications. Part I: General model formulation and boundary layer characterization. J Appl Meteorol. 2005;44(5):682-693. DOI: 10.1175/JAM2227.1.

  • [7] Perry SG Cimorelli AJ Paine RJ Brode RW Weil JC Venkatram A et al. AERMOD: A dispersion model for industrial source applications. Part II: Model performance against 17 field study databases. J Appl Meteorol. 2005;44(5):694-708. DOI: 10.1175/JAM2228.1.

  • [8] Helge Rørdam Olesen PL Berkowicz R. OML: Review of model formulation. NERI Technical Report No. 609; 2007. http://www.dmu.dk/Pub/FR609.pdf.

  • [9] CERC. ADMS 5.0 Flat Terrain Validation Kincaid Indianapolis and Prairie Grass. June 2013. http://www.cerc.co.uk/environmental-software/assets/data/doc_validation/CERC_ADMS5_Study_Validation_Kincaid_Indianapolis_PrairieGrass_5.0_vs_4.2.pdf.

  • [10] Holmes NS Morawska L. A review of dispersion modelling and its application to the dispersion of particles: An overview of different dispersion models available. Atmos Environ. 2006;40:5902-5928. DOI: 10.1016/j.atmosenv.2006.06.003.

  • [11] Scire JS Robe FR Fernau ME Yamartino RJ. A user’s guide for the CALMET meteorological model (Version 5). Earth Tech Inc. Concord MA; 2000. http://www.src.com/calpuff/download/CALMET_UsersGuide.pdf.

  • [12] Scire JS Strimaitis DG Yamartino RJ. A user’s guide for the CALPUFF dispersion model (Version 5). Earth Tech Inc. Concord MA; 2000. http://www.src.com/calpuff/download/CALPUFF_UsersGuide.pdf.

  • [13] Karamchandani P Chen S Seigneur C. CALPUFF Chemistry Upgrade. AER Final Report CP277-07-01 prepared for API Washington DC. San Ramon CA; Atmospheric & Environmental Research Inc.; 2008. https://www3.epa.gov/ttn/scram/11thmodconf/200802-CALPUFF_Chemistry_Upgrade.pdf.

  • [14] Karamchandani P Chen S-Y Balmori R. Evaluation of original and improved versions of CALPUFF using the 1995 SWWYTAF data base. AER Report CP281-09-01 prepared for API Washington DC. San Francisco CA: Atmospheric and Environmental Research Inc.; 2009. http://mycommittees.api.org/rasa/amp/CALPUFF%20Projects%20and%20Studies/CALPUFF%20Evaluation%20with%20SWWYTAF,%202009,%20Kharamchandani%20et%20al.pdf.

  • [15] Scire JS Strimaitis DG Wu Z-X. New developments and evaluations of the CALPUFF model exponent. 10th EPA Conference on Air Quality Modeling. Research Triangle Park NC; March 2012. http://mycommittees.api.org/rasa/amp/CALPUFF%20Projects%20and%20Studies/CALPUFF%20Evaluation%20with%20SWWYTAF,%202009,%20Kharamchandani%20et%20al.pdf.

  • [16] Suppan P Skouloudis A. Inter-comparison of two air quality modelling systems for a case study in Berlin. Int J Environ Pollut. 2003;20:75-84. DOI: 10.1504/IJEP.2003.004250.

  • [17] Juda-Rezler K. New challenges in air quality and climate modeling. Archiv Environ Protect. 2010;36(1):3-28. www.ipis.zabrze.pl/dokumenty/archives/roczniki/2010/AOS10-1.pdf.

  • [18] Karamchandani P Vijayaraghavan K Yarwood G. Sub-grid scale plume modeling. Atmosphere. 2011;2(3):389-406. DOI: 10.3390/atmos2030389.

  • [19] Leelőssy Á Molnár F Izsák F Havasi Á Lagzi I Mészáros R. Dispersion modeling of air pollutants in the atmosphere: a review. Open Geosciences. 2014;6(3):257-278. DOI: 10.2478/s13533-012-0188-6.

  • [20] US EPA. Guideline on Air Quality Models: Revision to the Guideline on Air Quality Models: Adoption of a Preferred General Purpose (Flat and Complex Terrain) Dispersion Model and Other Revisions; Final Rule. Federal Register 40 CFR Part 51. 2005;70(216):68218-68261. https://www3.epa.gov/scram001/guidance/guide/appw_05.pdf.

  • [21] US EPA. Clarification of regulatory status of CALPUFF for near-field applications. Office of Air Quality Planning and Standards Air Quality Assessment Division Research Triangle Park NC; 2008. https://www3.epa.gov/scram001/guidance/clarification/clarification%20of%20regulatory%20status%20of%20calpuff.pdf.

  • [22] Levy JI Spengler JD Hlinka D Sullivan D Moon D. Using CALPUFF to evaluate the impacts of power plant emissions in Illinois: model sensitivity and implications. Atmos Environ. 2002;36:1063-1075. DOI: 10.1016/S1352-2310(01)00493-9.

  • [23] Levy JI Wilson AM Evans JS Spengler JD. Estimation of primary and secondary particulate matter intake fractions for power plants in Georgia. Environ Sci Technol. 2003;37(24):5528-36. DOI: 10.1021/es034484l.

  • [24] Yim SHL Fung JCH Lau AKH. Use of high-resolution MM5/CALMET/CALPUFF system: SO2 apportionment to air quality in Hong Kong. Atmos Environ. 2010;44:4850-4858. DOI: 10.1016/j.atmosenv.2010.08.037.

  • [25] Cui H Yao R Xu X Xin C Yang J. A tracer experiment study to evaluate the CALPUFF real time application in a near-field complex terrain setting. Atmos Environ. 2011;45(39):7525-7532. DOI: 10.1016/j.atmosenv.2011.08.041.

  • [26] Hernández-Garces A Souto Ja Rodríguez Á Saavedra S Casares JJ. Validation of CALMET/CALPUFF models simulations around a large power plant stack. Física de la Tierra. 2015;27:35-55. DOI: http://dx.doi.org/10.5209/rev_FITE.2015.v27.51192.

  • [27] Dresser AL Huizer RD. CALPUFF and AERMOD model validation study in the near field: Martins Creek revisited. J Air Waste Manage Assoc. 2011;61(6):647-659. DOI: 10.3155/1047-3289.61.6.647.

  • [28] Gulia S Kumar A Khare M. Performance evaluation of CALPUFF and AERMOD dispersion models for air quality assessment of an industrial complex. J Sci Ind Res. 2015;74:302-307. http://nopr.niscair.res.in/handle/123456789/31451.

  • [29] Jittra N Pinthong N Thepanondh S. Performance evaluation of AERMOD and CALPUFF air dispersion models in industrial complex area. Air Soil Water Res. 2015;8:87-95. DOI:10.4137/ASWR.S32781.

  • [30] Rood AS. Performance evaluation of AERMOD CALPUFF and legacy air dispersion models using the Winter Validation Tracer Study dataset. Atmos Environ. 2014;89:707-720. DOI: 10.1016/j.atmosenv.2014.02.054.

  • [31] Tartakovsky D Broday DM Stern E. Evaluation of AERMOD and CALPUFF for predicting ambient concentrations of total suspended particulate matter (TSP) emissions from a quarry in complex terrain. Environ Pollut. 2013;179:138-145. DOI: 10.1016/j.envpol.2013.04.023.

  • [32] Thepanondh S Outapa P Saikomol S. Evaluation of dispersion model performance in predicting SO2 concentrations from petroleum refinery complex. Int J GEOMATE. 2016;11(23):2129-2135. http://www.geomatejournal.com/sites/default/files/articles/2129-2135-1118-Thepanondh-July-2016-c1.pdf.

  • [33] Holnicki P Kałuszko A Trapp W. An urban scale application and validation of the CALPUFF model. Atmos Pollut Res. 2015;7(3):393-402. DOI: 10.1016/j.apr.2015.10.016.

  • [34] Zhou Y Levy JI Hammitt JK Evans JS. Estimating population exposure to power plant emissions using CALPUFF: a case study in Beijing China. Atmos Environ. 2003;37(6):815-826. DOI: 10.1016/S1352-2310(02)00937-8.

  • [35] López MT Zuk M Garibay V Tzintzun G Iniestra R Fernández A. Health impacts from power plant emissions in Mexico. Atmos Environ. 2005;39(7):1199-1209. DOI: 10.1016/j.atmosenv.2004.10.035.

  • [36] Hao J Wang L Shen M Li L Hu J. Air quality impacts of power plant emissions in Beijing. Environ Pollut. 2007;147:401-408. DOI: 10.1016/j.envpol.2006.06.013.

  • [37] ENVIRON International Corporation. Evaluation of Chemical Dispersion Models using Atmospheric Plume Measurements from Field Experiments. Final Report UNC-EMAQ 4-06.018.v4 prepared for Office of Air Quality Planning and Standards U.S. EPA. EPA Contract No: EP-D-07-102 Novato CA; September 2012. https://www3.epa.gov/scram001/reports/Plume_Eval_Final_Sep_2012v5.pdf.

  • [38] Apostoł M Bąkowski A Chronowska-Przywara K Kot M Monieta J Oleniacz R et al. Wybrane zagadnienia inżynierii mechanicznej materiałowej i środowiskowej (Selected issues of mechanical material and environmental engineering). Kraków: Wyd. Katedra Automatyzacji Procesów AGH w Krakowie; 2015. DOI: 10.13140/RG.2.1.2907.1440.

  • [39] EEA. Reported data on large combustion plants covered by Directive 2001/80/EC. August 2016. http://www.eea.europa.eu/data-and-maps/data/lcp-1.

  • [40] US EPA. AP42 Fifth Ed. Vol. 1 1.1 1993. http://www.epa.gov/ttn/chief/ap42/ch01/bgdocs/b01s01.pdf.

  • [41] Chief Inspectorate for Environmental Protection (Poland). Air Quality Portal. http://powietrze.gios.gov.pl (accessed in 31.01.2016).

  • [42] EEA. AirBase - The European air quality database. http://www.eea.europa.eu/data-and-maps/data/airbase-the-european-air-quality-database-8/ (accessed in 30.09.2015).

  • [43] EEA. Air Quality e-Reporting (AQ e-Reporting). May 2016. http://www.eea.europa.eu/data-and-maps/data/aqereporting-1.

  • [44] Oleniacz R Rzeszutek M. Determination of optimal spatial databases for the area of Poland to the calculation of air pollutant dispersion using the CALMET/CALPUFF model. Geomat Environ Eng. 2014;8(2):57-69. DOI: 10.7494/geom.2014.8.2.57.

  • [45] Oleniacz R Rzeszutek M. Assessment of the impact of spatial data on the results of air pollution dispersion modeling. Geoinformatica Polonica. 2014;13:57-68. DOI: 10.2478/gein-2014-0006.

  • [46] Stelson AW Seinfeld JH. Relative humidity and temperature dependence of the ammonium nitrate dissociation constant. Atmospheric Environ. 1982;16:983-992. DOI: 10.1016/0004-6981(82)90184-6.

  • [47] Atkinson R Lloyd AC Winges L. An updated chemical mechanism for hydrocarbon/NOx/SOx photo oxidation suitable for inclusion in atmospheric simulation models. Atmos Environ. 198216:1341-1355. DOI: 10.1016/0004-6981(82)90055-5.

  • [48] Scire JS Lurmann FW Bass A Hanna SR. Development of the MESOPUFF II Dispersion Model. Concord MA: Environmental Research and Technology Inc.; Contract No. 68-02-3733; Environmental Sciences Research Lab. Office of Research and Development U.S. EPA Research Triangle Park NC; 1984. https://nepis.epa.gov/Exe/ZyPDF.cgi/9101QF22.PDF?Dockey=9101QF22.PDF.

  • [49] Morris RE Kessler RC Douglas SG Styles KR Moore GE. Rocky Mountain Acid Deposition Model Assessment: Acid Rain Mountain Mesoscale Model (ARM3). San Rafael CA.: Systems Applications Inc. US EPA Research Triangle Park NC Atmospheric Sciences Research Laboratory; 1988. https://ntrl.ntis.gov/NTRL/dashboard/searchResults/titleDetail/PB89124408.xhtml.

  • [50] Nenes A Pandis SN Pilinis C. ISORROPIA: A new thermodynamic equilibrium model for multiphase multicomponent inorganic aerosols. Aquat Geochem. 1998;4(1):123-152. DOI: 10.1023/A:1009604003981.

  • [51] Fountoukis C Nenes A. ISORROPIA II: a computationally efficient thermodynamic equilibrium model for K+-Ca2+-Mg2+-NH4+-Na+-SO42−-NO3-Cl-H2O aerosols. Atmos Chem Phys. 2007;7(17):4639-4659. DOI: 10.5194/acp-7-4639-2007.

  • [52] Wexler AS Seinfeld JH. Second-generation inorganic aerosol model. Atmos Environ. 1991;25A:2731-2748. DOI: 10.1016/0960-1686(91)90203-J.

  • [53] TRC Environmental Corporation. CALPUFF Chemistry Updates: User’s Instructions for API Chemistry Options. Prepared for WEST Associates Lowell MA; 2010. http://www.src.com/calpuff/download/Mod64_Files/UsersInstructions_UpdatedChemistry.pdf.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 1.467
5-year IMPACT FACTOR: 1.226

CiteScore 2018: 1.47

SCImago Journal Rank (SJR) 2018: 0.352
Source Normalized Impact per Paper (SNIP) 2018: 0.907

Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 461 274 7
PDF Downloads 199 121 1