Green Synthesis: Nanoparticles and Nanofibres Based on Tree Gums for Environmental Applications

Open access

Abstract

The recent advances and potential applications of nanoparticles and nanofibres for energy, water, food, biotechnology, the environment, and medicine have immensely conversed. The present review describes a ‘green’ method for the synthesis and stabilization of nanoparticles and ‘green electrospinning’ both using tree gums (arabic, tragacanth, karaya and kondagogu). Furthermore, this review focuses on the impending applications of both gum stabilized nanoparticles and functionalized membranes in remediation of toxic metals, radioactive effluents, and the adsorptive removal of nanoparticulates from aqueous environments as well as from industrial effluents. Besides, the antibacterial properties of gum derivatives, gum stabilized nanoparticles, and functionalized electrospun nanofibrous membranes will also be highlighted. The functionalities of nanofibrous membranes that can be enhanced by various plasma treatments (oxygen and methane, respectively) will also be emphasized.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Fryxell GE Cao G. Environmental Applications of Nanomaterials: Synthesis Sorbents and Sensors. London: Imperial College Press; 2007.

  • [2] Thavasi V Singh G Ramakrishna S D’Amato G Veleirinho B Rei MF et al. Electrospun nanofibers in energy and environmental applications. Energy Environ Sci. 2008;1:205. DOI: 10.1039/b809074m.

  • [3] Vigneswaran S Unesco. Water and Wastewater Treatment Technologies; Vol. 1. Oxford: EOLSS Publ; 2009.

  • [4] Matlack AS. Introduction to green chemistry. New York/London: CRC Press; 2010.

  • [5] Colvin VL. The potential environmental impact of engineered nanomaterials. Nat Biotechnol. 2003;21:1166-1170. DOI: 10.1038/nbt875.

  • [6] Dwivedi AD Dubey SP Sillanpää M Kwon Y-N Lee C Varma RS. Fate of engineered nanoparticles: Implications in the environment. Coord Chem Rev. 2015;287:64-78. DOI: 10.1016/j.ccr.2014.12.014.

  • [7] Sharma VK Filip J Zboril R Varma RS Rizzello L Pompa PP et al. Natural inorganic nanoparticles - formation fate and toxicity in the environment. Chem Soc Rev. 2015;44:8410-23. DOI: 10.1039/C5CS00236B.

  • [8] Grassian VH. Nanoscience and Nanotechnology: Environmental and Health Impacts. Wiley; 2008. DOI: 10.1002/9780470396612

  • [9] Varma RS. Greener and sustainable trends in synthesis of organics and nanomaterials. ACS Sustain Chem Eng. 2016;4:5866-5878. DOI: 10.1021/acssuschemeng.6b01623.

  • [10] Varma RS. Nano-catalysts with magnetic core: sustainable options for greener synthesis. Sustain Chem Process 2014;2:11. DOI: 10.1186/2043-7129-2-11.

  • [11] Anastas PT Warner JC. Green Chemistry: Theory and Practice. New York: Oxford University Press; 1998.

  • [12] Shamim N Sharma VK editors. Sustainable Nanotechnology and the Environment: Advances and Achievements; vol. 1124. Washington DC: American Chemical Society; 2013. DOI: 10.1021/bk-2013-1124.

  • [13] Luque R Varma RS editors. Sustainable Preparation of Metal Nanoparticles. Cambridge: Royal Society of Chemistry; 2012. DOI: 10.1039/9781849735469.

  • [14] Virkutyte J Varma RS Kumar V Yadav SK Dahl JA Maddux BLS et al. Green synthesis of metal nanoparticles: Biodegradable polymers and enzymes in stabilization and surface functionalization. Chem Sci. 2011;2:837-846. DOI: 10.1039/C0SC00338G.

  • [15] Iravani S Klefenz H Chan WCW Nie S Tian Z Ren B et al. Green synthesis of metal nanoparticles using plants. Green Chem. 2011;13:2638. DOI: 10.1039/c1gc15386b.

  • [16] Hebbalalu D Lalley J Nadagouda MN Varma RS. Greener techniques for the synthesis of silver nanoparticles using plant extracts enzymes bacteria biodegradable polymers and microwaves. ACS Sustain Chem Eng. 2013;1:703-712. DOI: 10.1021/sc4000362.

  • [17] Raveendran P Fu J Wallen SL. Completely “green” synthesis and stabilization of metal nanoparticles. J Am Chem Soc. 2003; 125(46) 13940-13941. DOI: 10.1021/JA029267J.

  • [18] Pereao OK Bode-Aluko C Ndayambaje G Fatoba O Petrik LF. Electrospinning: Polymer nanofibre adsorbent applications for metal ion removal. J Polym Environ. 2016:1-15. DOI: 10.1007/s10924-016-0896-y.

  • [19] Jayaraman K Kotaki M Zhang Y Mo X Ramakrishna S. Recent advances in polymer nanofibers. J Nanosci Nanotechnol. 2004;4:52-65.

  • [20] Greiner A Wendorff JH. Electrospinning: A fascinating method for the preparation of ultrathin fibers. Angew Chemie Int Ed. 2007;46:5670-5703. DOI: 10.1002/anie.200604646.

  • [21] Nie H He A Zheng J Xu S Li J Han CC. effects of chain conformation and entanglement on the electrospinning of pure alginate. Biomacromolecules. 2008;9:1362-1365. DOI: 10.1021/bm701349j.

  • [22] Zain NM Stapley AGF Shama G. Green synthesis of silver and copper nanoparticles using ascorbic acid and chitosan for antimicrobial applications. Carbohydr Polym. 2014;112:195-202. DOI: 10.1016/j.carbpol.2014.05.081.

  • [23] Vasileva P Donkova B Karadjova I Dushkin C. Synthesis of starch-stabilized silver nanoparticles and their application as a surface plasmon resonance-based sensor of hydrogen peroxide. Colloids Surfaces A Physicochem Eng Asp. 2011;382:203-10. DOI: 10.1016/j.colsurfa.2010.11.060.

  • [24] Sarma TK Chattopadhyay A. Starch-mediated shape-selective synthesis of Au nanoparticles with tunable longitudinal plasmon resonance. Langmuir. 2004;20(9):3520-3524. DOI: 10.1021/LA049970G.

  • [25] Lokanathan AR Uddin KMA Rojas OJ Laine J. Cellulose nanocrystal-mediated synthesis of silver nanoparticles: role of sulfate groups in nucleation phenomena. Biomacromolecules. 2014;15:373-379. DOI: 10.1021/bm401613h.

  • [26] Kora AJ Sashidhar RB. Antibacterial activity of biogenic silver nanoparticles synthesized with gum ghatti and gum olibanum: a comparative study. J Antibiot. 2015;68:88-97. DOI: 10.1038/ja.2014.114.

  • [27] Wu C-C Chen D-H. Facile green synthesis of gold nanoparticles with gum arabic as a stabilizing agent and reducing agent. Gold Bull. 2010;43:234-240. DOI: 10.1007/BF03214993.

  • [28] Kong H Yang J Zhang Y Fang Y Nishinari K Phillips GO. Synthesis and antioxidant properties of gum arabic-stabilized selenium nanoparticles. Int J Biol Macromol. 2014;65:155-162. DOI: 10.1016/j.ijbiomac.2014.01.011.

  • [29] Vinod VTP Sashidhar RB Sukumar AA. Competitive adsorption of toxic heavy metal contaminants by gum kondagogu (Cochlospermum gossypium): A natural hydrocolloid. Colloids Surfaces B Biointerfaces. 2010;75:490-495. DOI: 10.1016/j.colsurfb.2009.09.023.

  • [30] Peralta-Videa JR Huang Y Parsons JG Zhao L Lopez-Moreno L Hernandez-Viezcas JA et al. Plant-based green synthesis of metallic nanoparticles: scientific curiosity or a realistic alternative to chemical synthesis? Nanotechnol Environ Eng. 2016;1:4. DOI: 10.1007/s41204-016-0004-5.

  • [31] Shankar SS Ahmad A Sastry M. Geranium leaf assisted biosynthesis of silver nanoparticles. Biotechnol Prog. 2003;19:1627-1631. DOI: 10.1021/bp034070w.

  • [32] Shankar SS Ahmad A Pasricha R Sastry M Lovley DR Stolz JF et al. Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. J Mater Chem. 2003;13:1822. DOI: 10.1039/b303808b.

  • [33] Shankar SS Rai A Ahmad A Sastry M. Rapid synthesis of Au Ag and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J Colloid Interface Sci. 2004;275:496-502. DOI: 10.1016/j.jcis.2004.03.003.

  • [34] Selvakannan P Sastry M Mandal S Roy D Chaudhari RV Sastry M et al. Hollow gold and platinum nanoparticles by a transmetallation reaction in an organic solution. Chem Commun. 2005;16:1684. DOI: 10.1039/b418566h.

  • [35] Vilchis-Nestor AR Sánchez-Mendieta V Camacho-López MA Gómez-Espinosa RM Camacho-López MA Arenas-Alatorre JA. Solventless synthesis and optical properties of Au and Ag nanoparticles using Camellia sinensis extract. Materials Lett. 2008;62. DOI: 10.1016/j.matlet.2008.01.138.

  • [36] Lincoln EP Koopman B Bagnall LO Nordstedt RA. Aquatic system for fuel and feed production from livestock wastes. J Agric Eng Res. 1986;33:159-169. DOI: 10.1016/S0021-8634(86)80046-4.

  • [37] Makarov VV Love AJ Sinitsyna OV Makarova SS Yaminsky IV Taliansky ME et al. Green nanotechnologies: synthesis of metal nanoparticles using plants. Acta Naturae. 2014;6:35-44.

  • [38] Hutchison JE. Greener nanoscience: A proactive approach to advancing applications and reducing implications of nanotechnology. ACS Nano. 2008;2:395-402. DOI: 10.1021/nn800131j.

  • [39] Mosaferi M Nemati S Khataee A Nasseri S Hashemi A Ravenscroft P et al. Removal of arsenic (III V) from aqueous solution by nanoscale zero-valent iron stabilized with starch and carboxymethyl cellulose. J Environ Heal Sci Eng. 2014;12:74. DOI: 10.1186/2052-336X-12-74.

  • [40] Reicha FM Sarhan A Abdel-Hamid MI El-Sherbiny IM. Preparation of silver nanoparticles in the presence of chitosan by electrochemical method. Carbohydr Polym. 2012;89:236-244. DOI: 10.1016/j.carbpol.2012.03.002.

  • [41] Long Y Ran X Zhang L Guo Q Yang T Gao J et al. A method for the preparation of silver nanoparticles using commercially available carboxymethyl chitosan and sunlight. Materials Lett. 2013;112:101-104. DOI: 10.1016/j.matlet.2013.09.035.

  • [42] Vigneshwaran N Nachane RP Balasubramanya RH Varadarajan PV. A novel one-pot “green” synthesis of stable silver nanoparticles using soluble starch. Carbohydr Res. 2006;341:2012-8. DOI: 10.1016/j.carres.2006.04.042.

  • [43] Yang J Pan J. Hydrothermal synthesis of silver nanoparticles by sodium alginate and their applications in surface-enhanced Raman scattering and catalysis. Acta Mater. 2012;60:4753-4758. DOI: 10.1016/j.actamat.2012.05.037.

  • [44] Zhang R Edgar KJ. Properties chemistry and applications of the bioactive polysaccharide curdlan. Biomacromolecules. 2014;15:1079-1096. DOI: 10.1021/bm500038g.

  • [45] Zhao X Xia Y Li Q Ma X Quan F Geng C et al. Microwave-assisted synthesis of silver nanoparticles using sodium alginate and their antibacterial activity. Colloids Surfaces A Physicochem Eng Asp. 2014;444:180-188. DOI: 10.1016/j.colsurfa.2013.12.008.

  • [46] Bankura KP Maity D Mollick MMR Mondal D Bhowmick B Bain MK et al. Synthesis characterization and antimicrobial activity of dextran stabilized silver nanoparticles in aqueous medium. Carbohydr Polym. 2012;89:1159-1165. DOI: 10.1016/j.carbpol.2012.03.089.

  • [47] Chen J Wang J Zhang X Jin Y. Microwave-assisted green synthesis of silver nanoparticles by carboxymethyl cellulose sodium and silver nitrate. Mater Chem Phys. 2008;108:421-424. DOI: 10.1016/j.matchemphys.2007.10.019.

  • [48] El-Rafie MH El-Naggar ME Ramadan MA Fouda MMG Al-Deyab SS Hebeish A. Environmental synthesis of silver nanoparticles using hydroxypropyl starch and their characterization. Carbohydr Polym. 2011;86:630-635. DOI: 10.1016/j.carbpol.2011.04.088.

  • [49] Hebeish A El-Rafie MH El-Sheikh MA El-Naggar ME. Nanostructural features of silver nanoparticles powder synthesized through concurrent formation of the nanosized particles of both starch and silver. J Nanotechnol. 2013:1-10. DOI: 10.1155/2013/201057.

  • [50] Hebeish A Farag S Sharaf S Shaheen TI. Nanosized carbamoylethylated cellulose as novel precursor for preparation of metal nanoparticles. Fibers Polym. 2015;16:276-284. DOI: 10.1007/s12221-015-0276-6.

  • [51] Hebeish AA El-Rafie MH Abdel-Mohdy FA Abdel-Halim ES Emam HE. Carboxymethyl cellulose for green synthesis and stabilization of silver nanoparticles. Carbohydr Polym. 2010;82:933-941. DOI: 10.1016/j.carbpol.2010.06.020.

  • [52] Kanmani P Lim ST. Synthesis and characterization of pullulan-mediated silver nanoparticles and its antimicrobial activities. Carbohydr Polym. 2013;97:421-428. DOI: 10.1016/j.carbpol.2013.04.048.

  • [53] Johnson RL Nurmi JT O’Brien Johnson GS Fan D O’Brien Johnson RL Shi Z et al. Field-scale transport and transformation of carboxymethylcellulose-stabilized nano zero-valent iron. Environ Sci Technol. 2013;47:1573-1580. DOI: 10.1021/es304564q.

  • [54] El-Naggar ME Shaheen TI Fouda MMG Hebeish AA. Eco-friendly microwave-assisted green and rapid synthesis of well-stabilized gold and core-shell silver-gold nanoparticles. Carbohydr Polym. 2016;136:1128-1136. DOI: 10.1016/j.carbpol.2015.10.003.

  • [55] Wang B Chen K Jiang S Reincke F Tong W Wang D et al. Chitosan-mediated synthesis of gold nanoparticles on patterned poly(dimethylsiloxane) surfaces. Biomacromolecules. 2006;7:1203-1209. DOI: 10.1021/BM060030F.

  • [56] Wu C-C Chen D-H. Spontaneous synthesis of gold nanoparticles on gum arabic-modified iron oxide nanoparticles as a magnetically recoverable nanocatalyst. Nanoscale Res Lett. 2012;7:317. DOI: 10.1186/1556-276X-7-317.

  • [57] Venkatesham M Ayodhya D Madhusudhan A Veerabhadram G. Synthesis of stable silver nanoparticles using gum acacia as reducing and stabilizing agent and study of its microbial properties: A novel green approach. Int J Green Nanotechnol. 2012;4:199-206. DOI: 10.1080/19430892.2012.705999.

  • [58] Padil VVT Černík M. Poly (vinyl alcohol)/gum karaya electrospun plasma treated membrane for the removal of nanoparticles (Au Ag Pt CuO and Fe3O4) from aqueous solutions. J Hazard Mater. 2015;287:102-110. DOI: 10.1016/j.jhazmat.2014.12.042.

  • [59] Nadagouda MN Polshettiwar V Varma RS Sun S Murray CB Weller D et al. Self-assembly of palladium nanoparticles: synthesis of nanobelts nanoplates and nanotrees using vitamin B1 and their application in carbon-carbon coupling reactions. J Mater Chem. 2009;19:2026. DOI: 10.1039/b817112b.

  • [60] Nadagouda MN Varma RS Zou B Ceyhan B Simon U Niemeyer CM et al. Green and controlled synthesis of gold and platinum nanomaterials using vitamin B2: density-assisted self-assembly of nanospheres wires and rods. Green Chem. 2006;8:516. DOI: 10.1039/b601271j.

  • [61] Nadagouda MN Varma RS. A greener synthesis of core (Fe Cu)-shell (Au Pt Pd and Ag) nanocrystals using aqueous vitamin C. Cryst Growth Des. 2007;7:2582-7. DOI: 10.1021/cg070554e.

  • [62] Nadagouda MN Varma RS Wang X Li Y Sun Y Xia Y et al. Green synthesis of silver and palladium nanoparticles at room temperature using coffee and tea extract. Green Chem. 2008;10:859. DOI: 10.1039/b804703k.

  • [63] Kou J Varma RS. Beet juice - induced green fabrication of plasmonic AgCl/Ag nanoparticles. Chem Sus Chem. 2012;5:2435-2441. DOI: 10.1002/cssc.201200477.

  • [64] Kou J Varma RS Guo S Wang E Sau TK Rogach AL et al. Beet juice utilization: Expeditious green synthesis of noble metal nanoparticles (Ag Au Pt and Pd) using microwaves. RSC Adv. 2012;2:10283. DOI: 10.1039/c2ra21908e.

  • [65] Baruwati B Varma RS. High value products from waste: grape pomace extract - a three-in-one package for the synthesis of metal nanoparticles. Chem Sus Chem. 2009;2:1041-1044.

  • [66] Anderson DM Wang WP. Composition of the gum from Combretum paniculatum and four other gums which are not permitted food additives. Phytochemistry. 1990;29:1193-1195.

  • [67] Anderson DMW Weiping W. Gum arabic (Acacia Senegal) from Uganda: Characteristic N.M.R. Spectra amino acid compositions and gum/soil cationic relationships. Int Tree Crop J. 1992;7:167-179. DOI: 10.1080/01435698.1992.9752915.

  • [68] Anderson DMW Mcnab CGA Anderson CG Brown PM Pringuer MA. Studies of uronic acid materials Part 58: Gum exudates from the Genus Sterculia (Gum Karaya). Int Tree Crop J. 1983;2:147-154. DOI: 10.1080/01435698.1983.9752749.

  • [69] Anderson DMW Bridgeman MME. The composition of the proteinaceous polysaccharides exuded by astragalus microcephalus A. Gummifer and A. Kurdicus - The sources of Turkish gum tragacanth. Phytochemistry. 1985;24:2301-2304. DOI: 10.1016/S0031-9422(00)83031-9.

  • [70] Anderson DMW Howlett JF McNab CGA. The amino acid composition of the proteinaceous component of gum arabic (Acacia Senegal (L.) Willd.). Food Addit Contam. 1985;2:159-164. DOI: 10.1080/02652038509373539.

  • [71] Anderson DMW Howlett JF McNab CGA. The amino acid composition of the proteinaceous component of gum karaya (Sterculia spp.). Food Addit Contam. 1985;2:153-157. DOI: 10.1080/02652038509373538.

  • [72] Anderson DMW Yin XS. The amino acid composition and quantitative sugar-amino acid relationships in sequential Smith-degradation products from gum talha (Acacia seyal Del.). Food Addit Contam. 1988;5:1-8. DOI: 10.1080/02652038809373656.

  • [73] Hall SR. Biotemplating. Imperial College Press; 2009. DOI: 10.1142/p646.

  • [74] Phillips GO Williams PA. Tree exudates gums: natural and versatile food additives and ingredients. Food Ingred Anal Internat. 2001;23:26-28.

  • [75] Phillips GO Williams PA. Handbook of Hydrocolloids. Cambridge: Woodhead Pub; 2009; 155-168.

  • [76] Kennedy JF Phillips GO Williams PA editors. Gum Arabic. Cambridge: Royal Society of Chemistry; 2011. DOI: 10.1039/9781849733106.

  • [77] Williams PA Phillips GO. Gum Arabic. Cambridge: Woodhead Publishers LTD Press; 2009; 252-273.

  • [78] Verbeken D Dierckx S Dewettinck K. Exudate gums: occurrence production and applications. Appl Microbiol Biotechnol. 2003;63:10-21. DOI: 10.1007/s00253-003-1354-z.

  • [79] Vinod VTP Sashidhar RB Suresh KI Rama Rao B Vijaya Saradhi UVR Prabhakar Rao T. Morphological physico-chemical and structural characterization of gum kondagogu (Cochlospermum gossypium): A tree gum from India. Food Hydrocoll. 2008;22:899-915. DOI: 10.1016/j.foodhyd.2007.05.006.

  • [80] Vinod VTP Sashidhar RB Sarma VUM Vijaya Saradhi UVR. Compositional analysis and rheological properties of gum kondagogu (Cochlospermum gossypium): A tree gum from India. J Agric Food Chem. 2008;56:2199-207. DOI: 10.1021/jf072766p.

  • [81] Anderson DMW Dea ICM. Studies on uronic acid materials: Part XXX. Examination of three fractions obtained from acacia drepanolobium gum. Carbohydr Res. 1968;8:440-447. DOI: 10.1016/S0008-6215(00)81528-1.

  • [82] Fauconnier ML Blecker C Groyne J Razafindralambo H Vanzeveren E Marlier M et al. Characterization of two Acacia gums and their fractions using a langmuir film balance. J Agric Food Chem. 2000;48:2709-2712.

  • [83] Osman ME Menzies AR Williams PA Phillips GO Baldwin TC. The molecular characterisation of the polysaccharide gum from Acacia senegal. Carbohydr Res. 1993;246:303-318. DOI: 10.1016/0008-6215(93)84042-5.

  • [84] Osman ME Williams PA Menzies AR Phillips GO. Characterization of commercial samples of gum arabic. J Agric Food Chem. 1993;41:71-77. DOI: 10.1021/jf00025a016.

  • [85] Osman ME Menzies AR Martin BA Williams PA Phillips GO Baldwin TC. Characterization of gum arabic fractions obtained by anion-exchange chromatography. Phytochemistry. 1995;38:409-417. DOI: 10.1016/0031-9422(94)00645-A.

  • [86] Randall RC Phillips GO Williams PA. Fractionation and characterization of gum from Acacia senegal. Food Hydrocoll. 1989;3:65-75. DOI: 10.1016/S0268-005X(89)80034-7.

  • [87] Mahendran T Williams PA Phillips GO Al-Assaf S Baldwin TC. New insights into the structural characteristics of the arabinogalactan-protein (AGP) fraction of gum arabic. J Agric Food Chem. 2008;56:9269-9276. DOI: 10.1021/jf800849a.

  • [88] Phillips GO Williams PA. Handbook of Hydrocolloids. Woodhead Pub; 2009.

  • [89] Padala SR Williams PA Phillips GO. Adsorption of gum arabic egg white protein and their mixtures at the oil-water interface in limonene oil-in-water emulsions. J Agric Food Chem. 2009;57:4964-4973. DOI: 10.1021/jf803794n.

  • [90] Randall RC Phillips GO Williams PA. The role of the proteinaceous component on the emulsifying properties of gum arabic. Food Hydrocoll. 1988;2:131-140. DOI: 10.1016/S0268-005X(88)80011-0.

  • [91] Anderson DMW Grant DAD. The chemical characterization of some Astragalus gum exudates. Food Hydrocoll. 1988;2:417-423. DOI: 10.1016/S0268-005X(88)80006-7.

  • [92] Phillips GO Williams PA. Handbook of Hydrocolloids. CRC Press; 2000.

  • [93] Verotta L El-Sebakhy NA. Cycloartane and oleanane saponins from Astragalus sp. Stud Nat Prod Chem. 2001;25:179-234. DOI: 10.1016/S1572-5995(01)80008-9.

  • [94] Singh B Sharma V. Influence of polymer network parameters of tragacanth gum-based pH responsive hydrogels on drug delivery. Carbohydr Polym. 2014;101:928-940. DOI: 10.1016/j.carbpol.2013.10.022.

  • [95] Stephen AM Phillips GO Williams PA editors. Food Polysaccharides and their Applications. Boca Raton London New York: CRC Press. Taylor & Francis; 2006. https://ttngmai.files.wordpress.com/2012/10/foodpolysaccharidestheirapplications.pdf

  • [96] Anderson DMW McNab CGA Anderson CG Brown PM Pringuer MA. Studies of uronic acid materials. 58. Gum exudates from the genus Sterculia (gum karaya). Int Tree Crop J. 1983. DOI: 10.1080/01435698.1983.9752749

  • [97] Le Cerf D Irinei F Muller G. Solution properties of gum exudates from Sterculia urens (Karaya gum). Carbohydr Polym. 1990;13:375-386. DOI: 10.1016/0144-8617(90)90037-S.

  • [98] Brito ACF Silva DA de Paula RCM Feitosa JPA. Sterculia striata exudate polysaccharide: characterisation rheological properties and comparison with Sterculia urens (karaya) polysaccharide. Polym Inter. 2004;53:1025-1032. DOI: 10.1002/pi.1468

  • [99] de Brito ACF Sierakowski MR Reicher F Feitosa JPA de Paula RCM. Dynamic rheological study of Sterculia striata and karaya polysaccharides in aqueous solution. Food Hydrocoll. 2005;19:861-867. DOI: 10.1016/j.foodhyd.2004.10.035.

  • [100] Whistler RL BeMiller JN. Industrial Gums: Polysaccharides and their Derivatives. Third Ed. San Diego: Academic Press; 1993.

  • [101] Janaki B Sashidhar R. Physico-chemical analysis of gum kondagogu (Cochlospermum gossypium): a potential food additive. Food Chem. 1998;61:231-236. DOI: 10.1016/S0308-8146(97)00089-7.

  • [102] Idu M Uzoekwe S Onyibe HI. Nutritional evaluation of Sterculia setigera seeds and pod. Pakistan J Biol Sci. PJBS 2008;11:139-141.

  • [103] Janaki B Sashidhar RB. Subchronic (90-day) toxicity study in rats fed gum kondagogu (Cochlospermumgossypium). Food Chem Toxicol. 2000;38:523-534.

  • [104] Vegi GMN Sistla R Srinivasan P Beedu SR Khar RK Diwan P V. Emulsifying properties of gum kondagogu (Cochlospermum gossypium) a natural biopolymer. J Sci Food Agric. 2009;89:1271-1276. DOI: 10.1002/jsfa.3568.

  • [105] Naidu VGM Madhusudhana K Sashidhar RB Ramakrishna S Khar RK Ahmed FJ et al. Polyelectrolyte complexes of gum kondagogu and chitosan as diclofenac carriers. Carbohydr Polym. 2009;76:464-471. DOI: 10.1016/j.carbpol.2008.11.010.

  • [106] Vinod VTP Sashidhar RB. Solution and conformational properties of gum kondagogu (Cochlospermum gossypium) - A natural product with immense potential as a food additive. Food Chem. 2009;116:686-692. DOI: 10.1016/j.foodchem.2009.03.009.

  • [107] Vinod VTP Sashidhar RB Sarma VUM Raju SS. Comparative amino acid and fatty acid compositions of edible gums kondagogu (Cochlospermum gossypium) and karaya (Sterculia urens). Food Chem. 2010;123:57-62. DOI: 10.1016/j.foodchem.2010.03.127.

  • [108] Vinod VTP Sashidhar RB Sreedhar B. Biosorption of nickel and total chromium from aqueous solution by gum kondagogu (Cochlospermum gossypium): A carbohydrate biopolymer. J Hazard Mater. 2010;178:851-860. DOI: 10.1016/j.jhazmat.2010.02.016.

  • [109] Vinod VTP Sashidhar RB Sreedhar B Rama Rao B Nageswara Rao T Abraham JT. Interaction of Pb2+ and Cd2+ with gum kondagogu (Cochlospermum gossypium): A natural carbohydrate polymer with biosorbent properties. Carbohydr Polym. 2009;78:894-901. DOI: 10.1016/j.carbpol.2009.07.025.

  • [110] Vinod V Sashidhar R Černík M. Morphology and metal binding characteristics of a natural polymer - kondagogu (Cochlospermum gossypium) gum. Molecules. 2013;18:8264-8274. DOI: 10.3390/molecules18078264.

  • [111] Saravanan P Vinod VTP Sreedhar B Sashidhar RB. Gum kondagogu modified magnetic nano-adsorbent: An efficient protocol for removal of various toxic metal ions. Mater Sci Eng C. 2012;32:581-586. DOI: 10.1016/j.msec.2011.12.015.

  • [112] Vinod VTP Sashidhar RB Sukumar AA. Competitive adsorption of toxic heavy metal contaminants by gum kondagogu (Cochlospermum gossypium): A natural hydrocolloid. Colloids Surfaces B Biointerfaces. 2010;75:490-495. DOI: 10.1016/j.colsurfb.2009.09.023.

  • [113] Davidson RL editor. Handbook of Water-Soluble Gums and Resins. New York: McGraw-Hill; 1980. http://trove.nla.gov.au/version/10638860.

  • [114] Panda H. The Complete Technology Book on Natural Products (Forest Based). Asia Pacific Business Press; 2002.

  • [115] Kang J Cui SW Chen J Phillips GO Wu Y Wang Q. New studies on gum ghatti (Anogeissus latifolia) part I. Fractionation chemical and physical characterization of the gum. Food Hydrocoll. 2011;25:1984-1990. DOI: 10.1016/j.foodhyd.2010.12.011.

  • [116] Kang J Cui SW Phillips GO Chen J Guo Q Wang Q. New studies on gum ghatti (Anogeissus latifolia) Part III: Structure characterization of a globular polysaccharide fraction by 1D 2D NMR spectroscopy and methylation analysis. Food Hydrocoll. 2011;25:1999-2007. DOI: 10.1016/j.foodhyd.2010.11.020.

  • [117] Castellani O Al-Assaf S Axelos M Phillips GO Anton M. Hydrocolloids with emulsifying capacity. Part 2 - Adsorption properties at the n-hexadecane-water interface. Food Hydrocoll. 2010;24:121-130. DOI: 10.1016/j.foodhyd.2009.07.006.

  • [118] Deshmukh AS Setty CM Badiger AM Muralikrishna KS. Gum ghatti: A promising polysaccharide for pharmaceutical applications. Carbohydr Polym. 2012;87:980-986. DOI: 10.1016/j.carbpol.2011.08.099.

  • [119] Mohan YM Raju KM Sambasivudu K Singh S Sreedhar B. Preparation of acacia-stabilized silver nanoparticles: A green approach. J Appl Polym Sci. 2007;106:3375-3381. DOI: 10.1002/app.26979.

  • [120] Akele ML Assefa AG Alle M. Microwave-assisted green synthesis of silver nanoparticles by using gum acacia: Synthesis characterization and catalytic activity studies. Int J Green Chem Bioprocess. 2015;5:21-27.

  • [121] Dong C Zhang X Cai H Cao C. Facile and one-step synthesis of monodisperse silver nanoparticles using gum acacia in aqueous solution. J Mol Liq. 2014;196:135-141. DOI: 10.1016/j.molliq.2014.03.009.

  • [122] Djajadisastra JS Purnamasari P Pujiyanto A. Antioxidant activity of gold nanoparticles using gum arabic as a stabilizing agent. Int J Pharm Pharm Sci. 2014;6:462-465.

  • [123] Thanaa I. Shalaby Rasha S. Shams El-Dine SAAE-G. Green synthesis of gold nanoparticles using cumin seeds and gum arabic: Studying their photothermal efficiency. Nanosci Nanotechnol. 2015;5:89-96. DOI: 10.5923/j.nn.20150504.03.

  • [124] Kattumuri V Katti K Bhaskaran S Boote EJ Casteel SW Fent GM et al. Gum arabic as a phytochemical construct for the stabilization of gold nanoparticles: In vivo pharmacokinetics and X-ray-contrast-imaging studies. Small. 2007;3:333-341. DOI: 10.1002/smll.200600427.

  • [125] Dong C Cai H Zhang X Cao C. Synthesis and characterization of monodisperse copper nanoparticles using gum acacia. Phys E Low-Dimensional Syst Nanostruct. 2014;57:12-20. DOI: 10.1016/j.physe.2013.10.025.

  • [126] Chockalingam A Babu H Chittor R Tiwari J Che Y Li Y et al. Gum arabic modified Fe3O4 nanoparticles cross linked with collagen for isolation of bacteria. J Nanobiotechnol. 2010;8:30. DOI: 10.1186/1477-3155-8-30.

  • [127] Venkatesham M Ayodhya D Madhusudhan A Santoshi Kumari A Veerabhadram G Girija Mangatayaru K. A novel green synthesis of silver nanoparticles using gum karaya: Characterization antimicrobial and catalytic activity studies. J Clust Sci. 2014;25:409-422. DOI: 10.1007/s10876-013-0620-1.

  • [128] Vinod VTP Nguyen NHA Sevcu A Černík M. Fabrication characterization and antibacterial properties of electrospun membrane composed of gum karaya polyvinyl alcohol and silver nanoparticles. J Nanomater. 2015. Article ID 750726. DOI: Org/10.1155/2015/750726.

  • [129] Pooja D Panyaram S Kulhari H Reddy B Rachamalla SS Sistla R. Natural polysaccharide functionalized gold nanoparticles as biocompatible drug delivery carrier. Int J Biol Macromol. 2015;80:48-56. DOI: 10.1016/j.ijbiomac.2015.06.022.

  • [130] Thekkae Padil VV Černík M. Green synthesis of copper oxide nanoparticles using gum karaya as a biotemplate and their antibacterial application. Int J Nanomed. 2013;8:889-898. DOI: 10.2147/IJN.S40599.

  • [131] Vinod VTP Saravanan P Sreedhar B Devi DK Sashidhar RB. A facile synthesis and characterization of Ag Au and Pt nanoparticles using a natural hydrocolloid gum kondagogu (Cochlospermum gossypium). Colloids Surfaces B Biointerfaces. 2011;83:291-298. DOI: 10.1016/j.colsurfb.2010.11.035.

  • [132] Kora AJ Sashidhar RB Arunachalam J. Gum kondagogu (Cochlospermum gossypium): A template for the green synthesis and stabilization of silver nanoparticles with antibacterial application. Carbohydr Polym. 2010;82:670-679. DOI: 10.1016/j.carbpol.2010.05.034.

  • [133] Reddy GB Madhusudhan A Ramakrishna D Ayodhya D Venkatesham M Veerabhadram G. Green chemistry approach for the synthesis of gold nanoparticles with gum kondagogu: characterization catalytic and antibacterial activity. J Nanostructure Chem. 2015;5:185-193. DOI: 10.1007/s40097-015-0149-y.

  • [134] Saravanan P Vinod VTP Sreedhar B Sashidhar RB. Gum kondagogu modified magnetic nano-adsorbent: An efficient protocol for removal of various toxic metal ions. Mater Sci Eng C. 2012;32:581-586. DOI: 10.1016/j.msec.2011.12.015.

  • [135] Kora AJ Arunachalam J. Green fabrication of silver nanoparticles by gum tragacanth (Astragalus gummifer): A dual functional reductant and stabilizer. J Nanomater. 2012;2012:1-8. DOI: 10.1155/2012/869765.

  • [136] Ghayempour S Montazer M Mahmoudi Rad M. Tragacanth gum biopolymer as reducing and stabilizing agent in biosonosynthesis of urchin-like ZnO nanorod arrays: A low cytotoxic photocatalyst with antibacterial and antifungal properties. Carbohydr Polym. 2016;136:232-421. DOI: 10.1016/j.carbpol.2015.09.001.

  • [137] Kora A Beedu S Jayaraman A. Size-controlled green synthesis of silver nanoparticles mediated by gum ghatti (Anogeissus latifolia) and its biological activity. Org Med Chem Let. 2012;2:17. DOI: 10.1186/2191-2858-2-17.

  • [138] Kora AJ Rastogi L. Green synthesis of palladium nanoparticles using gum ghatti (Anogeissus latifolia) and its application as an antioxidant and catalyst. Arab J Chem. 2015. DOI: 10.1016/j.arabjc.2015.06.024.

  • [139] Mittal H Mishra SB. Gum ghatti and Fe3O4 magnetic nanoparticles based nanocomposites for the effective adsorption of rhodamine B. Carbohydr Polym. 2014;101:1255-1264. DOI: 10.1016/j.carbpol.2013.09.045.

  • [140] Lee KY Jeong L Kang YO Lee SJ Park WH. Electrospinning of polysaccharides for regenerative medicine. Adv Drug Deliv Rev. 2009;61:1020-1032. DOI: 10.1016/j.addr.2009.07.006.

  • [141] Matsumoto H Tanioka A. functionality in electrospun nanofibrous membranes based on fiber’s size surface area and molecular orientation. Membranes (Basel). 2011;1:249-264. DOI: 10.3390/membranes1030249.

  • [142] Ramakrishna S Fujihara K Teo W-E Lim T-C Ma Z. An Introduction to Electrospinning and Nanofibers. World Scientific; 2005. DOI: 10.1142/5894.

  • [143] Coluzza I Pisignano D Gentili D Pontrelli G Succi S. Ultrathin fibers from electrospinning experiments under driven fast-oscillating perturbations. Phys Rev Appl. 2014;2:54011. DOI: 10.1103/PhysRevApplied.2.054011.

  • [144] Yoon K Hsiao BS Chu B Samet JM Dominici F Curriero FC et al. Functional nanofibers for environmental applications. J Mater Chem. 2008;18:5326. DOI: 10.1039/b804128h.

  • [145] Toskas G Hund R-D Laourine E Cherif C Smyrniotopoulos V Roussis V. Nanofibers based on polysaccharides from the green seaweed Ulva Rigida. Carbohydr Polym. 2011;84:1093-1102. DOI: 10.1016/j.carbpol.2010.12.075.

  • [146] Ranjbar-Mohammadi M Bahrami SH Joghataei MT. Fabrication of novel nanofiber scaffolds from gum tragacanth/poly(vinyl alcohol) for wound dressing application: In vitro evaluation and antibacterial properties. Mater Sci Eng C. 2013;33:4935-4943. DOI: 10.1016/j.msec.2013.08.016.

  • [147] Lubambo AF de Freitas RA Sierakowski M-R Lucyszyn N Sassaki GL Serafim BM et al. Electrospinning of commercial guar-gum: Effects of purification and filtration. Carbohydr Polym. 2013;93:484-491. DOI: 10.1016/j.carbpol.2013.01.031.

  • [148] Elsabee MZ Naguib HF Morsi RE. Chitosan based nanofibers review. Mater Sci Eng C. 2012;32:1711-1726. DOI: 10.1016/j.msec.2012.05.009.

  • [149] Homayoni H Ravandi SAH Valizadeh M. Electrospinning of chitosan nanofibers: Processing optimization. Carbohydr Polym. 2009;77:656-661. DOI: 10.1016/j.carbpol.2009.02.008.

  • [150] Vashisth P Pruthi PA Singh RP Pruthi V. Process optimization for fabrication of gellan based electrospun nanofibers. Carbohydr Polym. 2014;109:16-21. DOI: 10.1016/j.carbpol.2014.03.003.

  • [151] Padil VVT Stuchlík M Černík M. Plasma modified nanofibres based on gum kondagogu and their use for collection of nanoparticulate silver gold and platinum. Carbohydr Polym. 2015;121:468-476. DOI: 10.1016/j.carbpol.2014.11.074.

  • [152] Padil VVT Nguyen NHA Rożek Z Ševců A Černík M. Synthesis fabrication and antibacterial properties of a plasma modified electrospun membrane consisting of gum kondagogu dodecenyl succinic anhydride and poly (vinyl alcohol). Surf Coatings Technol. 2015;271:32-38. DOI: 10.1016/j.surfcoat.2015.01.035.

  • [153] Radhi Addai Z Abdullah A Abd Mutalib S Hamid Musa K. Effect of gum arabic on quality and antioxidant properties of papaya fruit during cold storage. Int J Chem Tech Res. 2013;5:974-4290.

  • [154] Padil VVT Senan C Wacławek S Černík M. Electrospun fibers based on arabic karaya and kondagogu gums. Int J Biol Macromol. 2016;91:299-309. DOI: 10.1016/j.ijbiomac.2016.05.064.

  • [155] Padil VVT Černík M. Tree gum based electrospun nanofibre membranes: process optimization characterization and environmental application. Nanocon 2014 Proceedings. http://nanocon2014.tanger.cz/files/proceedings/20/reports/3178.pdf.

  • [156] Chu P Chen J Wang L Huang N. Plasma-surface modification of biomaterials. Mater Sci Eng R Reports. 2002;36:143-206. DOI: 10.1016/S0927-796X(02)00004-9.

  • [157] Guo M Ding B Li X Wang X Yu J Wang M. Amphiphobic nanofibrous silica mats with flexible and high-heat-resistant properties. J Phys Chem C. 2010;114:916-921. DOI: 10.1021/jp909672r.

  • [158] Daw R Candan S Beck AJ Devlin AJ Brook IM MacNeil S et al. Plasma copolymer surfaces of acrylic acid/17 octadiene: surface characterisation and the attachment of ROS 17/2.8 osteoblast-like cells. Biomaterials. 1998;19:1717-1725.

  • [159] Svirachev DM Tabaliov NA. Plasma Treatment of Polymer Surfaces in Different Gases. Adv. Technol. Based Wave Beam Gener. Plasmas. Dordrecht: Springer Netherlands; 1999; 475-476. DOI: 10.1007/978-94-017-0633-9_23.

  • [160] Webb K Hlady V Tresco PA. Relative importance of surface wettability and charged functional groups on NIH 3T3 fibroblast attachment spreading and cytoskeletal organization. J Biomed Mater Res. 1998;41:422-430.

  • [161] Tan SH Nguyen N-T Chua YC Kang TG. Oxygen plasma treatment for reducing hydrophobicity of a sealed polydimethylsiloxane microchannel. Biomicrofluidics. 2010;4:32204. DOI: 10.1063/1.3466882.

  • [162] Junkar I Vesel A Cvelbar U Mozetič M Strnad S. Influence of oxygen and nitrogen plasma treatment on polyethylene terephthalate (PET) polymers. Vacuum. 2009;84:83-85. DOI: 10.1016/j.vacuum.2009.04.011.

  • [163] Krupa A Sobczyk AT Jaworek A. Surface properties of plasma-modified poly(vinylidene fluoride) and poly(vinyl chloride) nanofibres. Fibres Text East Eur. 2014;2(104).

  • [164] Hilal N Khayet M Wright CJ. Membrane Modification: Technology and Applications. Taylor & Francis; 2012.

  • [165] Rangel EC Bento WCA Kayama ME Schreiner WH Cruz NC. Enhancement of polymer hydrophobicity by SF6 plasma treatment and argon plasma immersion ion implantation. Surf Interface Anal. 2003;35:179-183. DOI: 10.1002/sia.1518.

  • [166] Jeong L Yeo I-S Kim HN Yoon Y Il Jang DH Jung SY et al. Plasma-treated silk fibroin nanofibers for skin regeneration. Int J Biol Macromol. 2009;44:222-228. DOI: 10.1016/j.ijbiomac.2008.12.008.

  • [167] Nisoa M Wanichapichart P. Surface hydrophobic modification of cellulose membranes by plasma-assisted deposition of hydrocarbon films. Songklanakarin J Sci Technol. 2010;32:97-101.

  • [168] Thongphud A Paosawatyanyong B Visal-athaphand P Supaphol P. Improvement of hydrophobic properties of the electrospun PVA fabrics by SF6 plasma treatment. Adv Mater Res. 2008;55-57:625-8. DOI: 10.4028/www.scientific.net/AMR.55-57.625.

  • [169] Vinod VTP Sashidhar RB Sivaprasad N Sarma VUM Satyanarayana N Kumaresan R et al. Bioremediation of mercury (II) from aqueous solution by gum karaya (Sterculia urens): A natural hydrocolloid. Desalination. 2011;272:270-277. DOI: 10.1016/j.desal.2011.01.027.

  • [170] Vinod VTP Sashidhar RB. Bioremediation of industrial toxic metals with gum kondagogu (Cochlospermum gossypium): A natural carbohydrate biopolymer. Indian J Biotech. 2011;10:113-120. http://nopr.niscair.res.in/bitstream/123456789/10959/1/IJBT%2010(1)%20113-120.pdf.

  • [171] Masoumi A Ghaemy M. Removal of metal ions from water using nanohydrogel tragacanth gum-g-polyamidoxime: Isotherm and kinetic study. Carbohydr Polym. 2014;108:206-215. DOI: 10.1016/j.carbpol.2014.02.083.

  • [172] Sahraei R Ghaemy M. Synthesis of modified gum tragacanth/graphene oxide composite hydrogel for heavy metal ions removal and preparation of silver nanocomposite for antibacterial activity. Carbohydr Polym. 2017;157:823-833. DOI: 10.1016/j.carbpol.2016.10.059.

  • [173] Fosso-Kankeu E Mittal H Waanders F Ntwampe IO Ray SS. Preparation and characterization of gum karaya hydrogel nanocomposite flocculant for metal ions removal from mine effluents. Int J Environ Sci Technol. 2016;13:711-724. DOI: 10.1007/s13762-015-0915-x.

  • [174] Banerjee SS Chen D-H. Fast removal of copper ions by gum arabic modified magnetic nano-adsorbent. J Hazard Mater. 2007;147:792-799. DOI: 10.1016/j.jhazmat.2007.01.079.

  • [175] Sashidhar RB Selvi SK Vinod VTP Kosuri T Raju D Karuna R. Bioprospecting of gum kondagogu (Cochlospermum gossypium) for bioremediation of uranium(VI) from aqueous solution and synthetic nuclear power reactor effluents. J Environ Radioact. 2015;148:33-41. DOI: 10.1016/j.jenvrad.2015.05.016.

  • [176] Donaldson K Stone V Tran CL Kreyling W Borm PJA. Nanotoxicology. Occup Environ Med. 2004;61:727-728. DOI: 10.1136/oem.2004.013243.

  • [177] Padil VVT Senan C Černík M. Dodecenylsuccinic anhydride derivatives of gum karaya (Sterculia urens): Preparation characterization and their antibacterial properties. J Agric Food Chem. 2015;63:3757-3765. DOI: 10.1021/jf505783e.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 1.467
5-year IMPACT FACTOR: 1.226

CiteScore 2018: 1.47

SCImago Journal Rank (SJR) 2018: 0.352
Source Normalized Impact per Paper (SNIP) 2018: 0.907

Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 697 372 11
PDF Downloads 621 350 28