Uptake of Metals from Single and Multi-Component Systems by Spirulina Platensis Biomass

Open access


Spirulina platensis biomass is widely applied for different technological purposes. The process of lanthanum, chromium, uranium and vanadium accumulation and biosorption by Spirulina platensis biomass from single- and multi-component systems was studied. The influence of multi-component system on the spirulina biomass growth was less pronounced in comparison with the single-component ones. To trace the uptake of metals by spirulina biomass the neutron activation analysis was used. In the experiment on the accumulation the efficiency of studied metal uptake changes in the following order: La(V) > Cr(III) > U(VI) > V(V) (single-metal solutions) and Cr(III) > La(V) > V(V) > U(VI) (multi-metal system). The process of metals biosorption was studied during a two-hour experiment. The highest rate of metal adsorption for single-component systems was observed for lanthanum and chromium. While for the multi-component system the significant increase of vanadium and chromium content in biomass was observed. In biosorption experiments the rate of biosorption and the Kd value were calculated for each metal. Fourier transform infrared spectroscopy was used to identify functional groups responsible for metal binding. The results of the present work show that spirulina biomass can be implemented as a low-cost sorbent for metal removal from industrial wastewater.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Dwivedi S Srivastava S Mishra S Kumar A Tripathi RD Rai UN et al. Characterization of native microalgal strains for their chromium bioaccumulation potential: Phytoplankton response in polluted habitats. J Hazard Mater. 2010;173:95-101. DOI: 10.1016/j.jhazmat.2009.08.053.

  • [2] Kazy SK Das SK Sar PJ. Lanthanum biosorption by a Pseudomonas sp.: equilibrium studies and chemical characterization. Ind Microbiol Biotechnol. 2006;33:773-783. DOI: 10.1007/s10295-006-0108-1.

  • [3] Jaishankar M Mathew BB Shah MS Murthy TPK Gowda KRS. Biosorption of few heavy metal ions using agricultural wastes. J Environ Pollut Hum Health. 2014;2:1-6. DOI: 10.12691/jephh-2-1-1.

  • [4] Lesmana SO Febriana N Soetaredjo FE Sunarso J Ismadji S. Studies on potential applications of biomass for the separation of heavy metals from water and wastewater. Biochem Eng J. 2009;44:19-41. DOI: 10.1016/j.bej.2008.12.009.

  • [5] Chojnacka K. Biosorption and bioaccumulation - the prospects for practical applications. Environ Int. 2010;36:299-307. DOI: 10.1016/j.envint.2009.12.001.

  • [6] Vijayaraghavan K Yun YS. Bacterial biosorbents and biosorption. Biotechnol Adv. 2008;26:266-291. DOI: 10.1016/j.biotechadv.2008.02.002.

  • [7] Lesmana SO Febriana N Soetaredjo FE Sunarso J Ismadji S. Studies on potential applications of biomass for the separation of heavy metals from water and wastewater. Biochem Eng J. 2009;44:19-41. DOI: 10.1016/j.bej.2008.12.009.

  • [8] Palmieri MC Volesky B Garcia O Jr. Biosorption of lanthanum using Sargassum fluitans in batch system. Hydrometallurgy. 2002;67:31-36. DOI: 10.1016/S0304-386X(02)00133-0.

  • [9] Nazari E Rashchi F Saba M Mirazimi SMJ. Simultaneous recovery of vanadium and nickel from power plant flyash: Optimization of parameters using response surface methodology. Waste Manage. 2014;34:2687-2696. DOI: 10.1016/j.wasman.2014.08.021.

  • [10] Tsibakhashvili N Kalabegishvili T Mosulishvili L Kirkesali E Kerkenjia S Murusidze I et al. Biotechnology of Cr(VI) transformation into Cr(III) complexes. J Radioanal Nucl Chem. 2008;278:565-569. DOI: 10.1007/s10967-008-1006-y.

  • [11] Zinicovscaia I Cepoi L. Cyanobacteria for Bioremediation of Wastewaters. Switzerland: Springer; 2016. http://www.springer.com/us/book/9783319267494.

  • [12] Aneja RK Chaudhary G Ahluwalia SS Goyal D. Biosorption of Pb and Zn by non-living biomass of Spirulina sp. Indian J Microbiol. 2010;50:438-42. DOI: 10.1007/s12088-011-0091-8.

  • [13] Michalak I Zielinska A Chojnacka K Matula J. Biosorption of Cr(III) by microalgae and macroalgae: equilibrium of the process. Am J Agric Biol Sci. 2007;2:284-290. DOI: 10.3844/ajabssp.2007.284.290.

  • [14] Rodrigues MS Ferreira LS de Carvalho JC Lodi A Finocchio E Converti A. Metal biosorption onto dry biomass of Arthrospira (Spirulina) platensis and Chlorella vulgaris: multi-metal systems. J Hazard Mater. 2012;30:217-218. DOI: 10.1016/j.jhazmat.2012.03.022.

  • [15] Kaushik S Juwarkar A Malik A Satya S. Biological removal of Cr(VI) by bacterial isolates obtained from metal contaminated sites. J Environ Sci Health Part A: Toxic/Hazard Subst Environ Eng. 2008;43:419-423. DOI: 10.1080/10934520701795665.

  • [16] Use of research reactors for neutron activation analysis. Report of an Advisory Group meeting held in Vienna 22-26 June 1998. IAEA Austria 2001. www.pub.iaea.org/books/iaeabooks/6171/Use-of-Research-Reactors-for-Neutron-Activation-Analysis.

  • [17] Frontasyeva MV. Neutron activation analysis for the life sciences. Phys Part Nuclei. 2011;42:332-378. DOI: 10.1134/S1063779611020043.

  • [18] Cecal A Humelnicu D Popa K Rudic V Gulea A Palamaru I et al. Bioleaching of UO2 2+ ions from poor uranium ores by means of cyanobacteria. J Radioanal Nucl Chem. 2000;245:427-429. DOI: 10.1023/A:1006707815553.

  • [19] Merroun ML Chekroun KB Arias JM Gonzalez-Munoz MT. Lanthanum fixation by Myxococcus xanthus: cellular location and extracellular polysaccharide observation. Chemosphere. 2003;52:113-120. DOI: 10.1016/S0045-6535(03)00220-0.

  • [20] Ortiz-Bernad I Anderson RT Vrionis HA Lovley DR. Vanadium respiration by Geobacter metallireducens: novel strategy for in situ removal of vanadium from groundwater. Appl Environ Microbiol. 2004;70:3091-3095. DOI: 10.1128/AEM.70.5.3091-3095.2004.

  • [21] Larsson MA Baken S Gustafsson JP Hadialhejazi G Smolders E. Vanadium bioavailability and toxicity to soil microorganisms and plants. Environ Toxicol Chem. 2013;32:2266-2273. DOI: 10.1002/etc.2322.

  • [22] Crans DC Smee JJ Gaidamauskas E Yang L. The chemistry and biochemistry of vanadium and the biological activities exerted by vanadium compounds. Chem Rev. 2004;104:849-902. DOI: 10.1021/cr020607.

  • [23] Vasilieva SG Tambiev AK Sedykh IM Lukyanov AA Bannikh LN. The enrichment of biomass of cyanobacteria with vanadium using the cation and anion forms of its compounds. J Trace Elem Med Biol. 2011;25:109-112. DOI: 10.1016/j.jtemb.2011.03.001.

  • [24] Merroun ML Raff J Rossberg A Hennig C Reich T Selenska-Pobell S. Complexation of uranium by cells and S-layer sheets of Bacillus sphaericus JG-A12. Appl Environ Microbiol. 2005;72:5532-5543. DOI: 10.1128/AEM.71.9.5532-5543.2005.

  • [25] Kalin M Wheeler WN Meinrath G. The removal of uranium from mining wastewater using algal/microbial biomass. J Environ Radioact. 2005;78:151-177. DOI: 10.1016/j.jenvrad.2004.05.002.

  • [26] Shivakumar CK Thippeswamy B Krishnappa M. Optimization of heavy metals bioaccumulation in Aspergillus niger and Aspergillus flavus. Int J Environ Biol. 2014;4:188-195. http://urpjournals.com/tocjnls/13_14v4i2_15.pdf.

  • [27] Damodaran D Shetty VK Balakrishnan RM. Interaction of heavy metals in multimetal biosorption by Galerina vittiformis from soil. Biorem J. 2015;19:56-68. DOI: 10.1080/10889868.2014.939135.

  • [28] Wong YS Tam NFY Wastewater Treatment with Algae. Berlin Heidelberg: Springer-Verlag; 1998. http://link.springer.com/book/10.1007%2F978-3-662-10863-5.

  • [29] Chojnacka K Chojnacki A Gorecka H. Biosorption of Cr3+ Cd2+ and Cu2+ ions by blue-green algae Spirulina sp.: Kinetics equilibrim and the mechanism of the process. Chemosphere. 2005;59:75-84. DOI: 10.1016/j.chemosphere.2004.10.005.

  • [30] Understanding variation in partition coefficient Kd values. Review of geochemistry and available Kd values for cadmium cesium hromium lead plutonium radon strontium thorium tritium (3H) and uranium. EPA 402-R-99-004B 1999. https://www.epa.gov/sites/production/files/2015-05/documents/402-r-99-004b.pdf.

Journal information
Impact Factor

IMPACT FACTOR 2018: 1.467
5-year IMPACT FACTOR: 1.226

CiteScore 2018: 1.47

SCImago Journal Rank (SJR) 2018: 0.352
Source Normalized Impact per Paper (SNIP) 2018: 0.907

Cited By
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 273 138 1
PDF Downloads 155 90 1