The Use Of Mosses In Biomonitoring Of Selected Areas In Poland And Spitsbergen In The Years From 1975 To 2014

Open access

Abstract

We have compared historical changes in concentrations of the heavy metals Mn, Ni, Cu, Zn, Cd and Pb accumulated in samples from the Polish woodlands of Beskidy and Karkonosze (S, SE Poland) and the north-east regions of the country, versus the relatively little polluted areas of Spitsbergen of the Svalbard Archipelago. We have combined the results from literature with new results from 2014. The regions of Beskidy and Karkonosze were the most exposed to heavy metals deposition. However, from 1975 to 2014 there was a considerable decrease of concentrations of Cu, Zn, Cd and Pb at all Polish sites, clearly signifying improvement of environmental quality. For example, the average Cd concentration in mosses samples collected in Karkonosze decreased from 0.002 mg/g in 1975 to 0.0006 mg/g in 2014. It is interesting to observe relatively large concentrations of nickel in moss samples collected in 2014 in the Svalbard archipelago, in the vicinity of Longyearbyen (average 0.018 mg/g) which most likely originate from local mine waste piles.

[1] Głuszcz P, Zakrzewska K, Wagner-Doebler I, Ledakowicz S. Bioreduction of ionic mercury from wastewater in a fixed-bed bioreactor with activated carbon. Chem Pap. 2008;62(3):232-238. DOI: 10.2478/s11696-008-0017-z.

[2] Travnikov O. Contribution of the intercontinental atmospheric transport to mercury pollution in the Northern Hemisphere. Atmos Environ. 2005;39:7541-7548.

[3] Wolterbeek B. Biomonitoring of trace element air pollution: principles possibilities and perspectives. Proc. of the International Workshop - BioMAP II. 28 August - 3 September 2000. Vienna, Austria; 2003:87-104.

[4] Markert B, Breure A, Zechmeister H. Bioindicators & Biomonitors: Principles. Concepts and Applications. Amsterdam: Elsevier; 2003.

[5] Smodiš B, Pignata ML, Saiki M, Cortés E, Bangfa N, Markert B, et al. Validation and application of plants as biomonitors of trace element atmospheric pollution - A co-ordinated effort in 14 countries. J Atmos Chem. 2004;49:3-13.

[6] Markert B. Definitions and principles for bioindication and biomonitoring of trace metals in the environment. J Trace Elem Med Biol. 2007;21(S1):77-82. DOI: 10.1016/j.jtemb.2007.09.015.

[7] Wardencki W, editor. Bioanalityka w ocenie zanieczyszczeń środowiska. Gdańsk: CEEAM; 2004.

[8] Olszowski T, Tomaszewska B, Goralna-Wlodarczyk K. Air quality in non-industrialised area in the typical Polish countryside based on measurements of selected pollutants in immission and deposition phase. Atmos Environ. 2012;50:139-147. DOI: 10.1016/j.atmosenv.2011.12.049.

[9] Kłos A, Rajfur M, Wacławek M, Wacławek W. 137Cs transfer from local particulate matter to lichens and mosses. Nukleonika. 2009;54(4):297-303.

[10] Dołhanczuk-Śródka A, Majcherczyk T, Smuda M, Ziembik Z, Wacławek M. Spatial Cs-137 distribution in forest soil. Nukleonika. 2006;51(2):569-579.

[11] Rühling Å, Tyler G. An ecological approach to the lead problem. Botan Notis. 1968;121:321-342.

[12] Freitas MC, Reis MA, Alves LC, Wolterbeek HTh. Distribution in Portugal of some pollutants in the lichen Parmelia sulcata. Environ Pollut. 1999;106:229-235.

[13] Freitas MC, Reis MA, Marques AP, Almeida SM, Farinha MM, de Oliveira O, et al. Monitoring of environmental contaminants: 10 years of application of k0-INAA. J Radioanal Nucl Chem. 2003;257(3):621-625.

[14] Kłos A, Rajfur M, Šrámek I, Wacławek M. Use of lichen and moss in assessment of forest contamination with heavy metals in Praded and Glacensis Euroregions (Poland and Czech Republic). Water Air Soil Pollut. 2011;222:367-376. DOI: 10.1007/s11270-011-0830-9.

[15] Kłos A, Rajfur M, Šrámek I, Wacławek M. Mercury concentration in lichen, moss and soil samples collected from the forest areas of Praded and Glacensis Euroregions (Poland and Czech Republic). Environ Monit Assess. 2012;184:6765-6774. DOI: 10.1007/s10661-011-2456-1.

[16] Kłos A, Rajfur M, Wacławek M, Wacławek W, Frontasyeva MV, Pankratova JS. The influence of unidentified pollution sources on the irregularity of biomonitoring tests results. Water Air Soil Pollut. 2008;191:345-352. DOI: 10.1007/s11270-008-9629-8.

[17] Matuszkiewicz JM. Potencjalna roślinność naturalna Polski (Potential natural vegetation of Poland). Warszawa: IGiPZ PAN; 2008.

[18] Troc M, Jelonek A, editors. Svalbard - Encyklopedia Geograficzna Świata - tom V Europa. Kraków: OPRESS; 1996.

[19] Nowosielski L. Klimat Spitsbergenu. Gazeta Obserwatora IMGW. 2004;2:14-17.

[20] Maciejowski W. Walory turystyczne i formy turystyki w archipelagu Svalbard (Norwegia). Studia nad turystyką. Prac geograf regional. 2007: Kraków: IGiGP UJ; 123-134.

[21] Araźny A. Bioklimat Arktyki Norweskiej i jego zmienność w okresie 1971-2000. Toruń: Wyd Nauk Uniwersytetu Mikołaja Kopernika: 2008.

[22] Johansen BF, Prestvold K, Overrein Ø. The Cruise Handbook for Svalbard. Tromsø: Norwegian Polar Institute; 2011.

[23] AMAP Assessment 2006: Acidifying Pollutants, Arctic Haze, and Acidification in the Arctic, Oslo: Arctic Monitoring and Assessment Programme; 2006.

[24] Gabrielsen GW, Evenset A, Frantzen S, Gwynn J, Hallanger IG, Kallenborn R, et al. MOSJ statusrapport 2011 Miljøgifter. Norsk Polarinstitutt Rapportserie 137. Norwegian Polar Institute; 2011.

[25] Elberling B, Søndergaard J, Jensen LA, Schmidt LB, Hansen BU, Asmund, G, et al. Arctic vegetation damage by winter-generated coal mining pollution released upon thawing. Environ Sci Technol. 2007;41:2407-2413.

[26] Askaer L, Schmidt LB, Elberling B, Asmund G, Jónsdóttir IS. Environmental impact on an Arctic soil-plant system resulting from metals released from coal mine waste in Svalbard (78°N). Water Air Soil Pollut. 2008;195:99-114.

[27] Headley AD. Heavy metals in peat from the high Arctic. Sci Total Environ. 1995;177: 105-111.

[28] Grodzińska K. Mosses as bioindicators of heavy metal pollution in polish national parks. Water Air Soil Pollut. 1978;9:83-97.

[29] Grodzińska K, Szarek G, Godzik B. Heavy metal deposition in polish national parks - changes during ten years. Water Air Soil Pollut. 1990;49:409-419.

[30] Herpin U, Berlekamp J, Markert B, Wolterbeek B, Grodzińska K, Siewers U, et al. The distribution of heavy metals in a transect of the three states the Netherlands, Germany and Poland determined with the aid of moss monitoring. Sci Total Environ. 1996;187:185-198.

[31] Grodzińska K, Szarek-Łukaszewska G, Godzik B. Survey of heavy metal deposition in Poland using mosses as indicators. Sci Total Environ. 1999;229:41-51

[32] Grodzińska K, Szarek-Łukaszewska G. Response of mosses to the heavy metal deposition in Poland - an overview. Environ Pollut. 2001;114:443-451.

[33] Malzahn E. Biomonitoring środowiska leśnego Puszczy Białowieskiej. Ochr Środow Zasob Natural. 2009;40:439-447.

[34] Malzahn E, Wójcik J. Metody stosowane w bioindykacji środowiska leśnego Puszczy Białowieskiej. Acta Agrophys. 2012;19(2):355-364.

[35] Grodzińska K, Frontasyeva M, Szarek-Łukaszewska G, Klich M, Kucharska-Fabiś A, Gundorina SF, et al. Trace element contamination in industrial regions of Poland studied by moss monitoring. Environ Monit Assess. 2003;87:255-270.

[36] Wojtuń B, Samecka-Cymerman A, Kolon K, Kempers AJ. Decreasing concentrations of metals in Sphagnum mosses in ombrotrophic mires of the Sudety mountains (SW Poland) since late 1980s. Chemosphere. 2013;91:1456-1461.

[37] Grodzińska K, Godzik B. Heavy metals and sulphur in mosses from southern Spitsbergen. Polar Res. 1991;9(2):133-140.

[38] Jóźwik Z. Heavy metals in tundra plants of the Bellsund in West Spitsbergen, investigated in the years 1987-1995. Pol Polar Res. 2000;21(1):43-54.

[39] Drbal K, Elster J, Komárek J. Heavy metals in water, ice and biological material from Spitsbergen, Svalbard. Polar Res. 1992;11(2):99-101.

[40] Węgrzyn M, Lisowska M, Nicia P. The value of the terricolous lichen Cetrariella delisei in the biomonitoring of heavy-metal levels in Svalbard. Pol Polar Res. 2013;34(4):375-382. DOI: 10.2478/popore-2013-0022.

[41] Samecka-Cymerman A, Wojtuń B, Kolon K, Kempers AJ. Sanionia uncinata (Hedw.) loeske as bioindicator of metal in polar regions. Polar Biol. 2011;34:381-388. DOI: 10.1007/s00300-010-0893-x.

[42] Wojtuń B, Samecka-Cymerman A, Kolon K, Kempers AJ, Skrzypek G. Metals in some dominant vascular plants. Mosses; Lichens, algae and the biological soil crust in various types of terrestrial tundra. SW Spitsbergen. Norway. Polar Biol. 2013; 36:1799-1809. DOI 10.1007/s00300-013-1399-0.

[43] Olszowski T, Bożym M. Pilot study on using an alternative method of estimating emission of heavy metals from wood combustion. Atmos Environ. 2014;94:22-27, DOI: 10.1016/j.atmosenv.2014.05.011.

[44] Tømmervik H, Høgda KA, Solheim I. Monitoring vegetation changes in Pasvik (Norway) and Pechenga in Kola Peninsula (Russia) using multitemporal Landsat MSS/TM data. Remote Sensing of Environ. 2003;85:370-388.

[45] Bjerke JW, Tømmervik H, Finne TE, Jensen H, Lukina N, Bakkestuen V. Epiphytic lichen distribution and plant leaf heavy metal concentrations in Russian-Norwegian boreal forests influenced by air pollution from nickel-copper smelters. Boreal Environ Res. 2006;11:441-450. A.

[46] Pollock TM, Tin S. Nickel-based super-alloys for advanced turbine engines: chemistry, microstructure, and properties. J Propul Power. 2006;22(2):361-374.

Ecological Chemistry and Engineering S

The Journal of Society of Ecological Chemistry and Engineering

Journal Information


IMPACT FACTOR 2017: 0.7
5-year IMPACT FACTOR: 0.815

CiteScore 2017: 0.79

SCImago Journal Rank (SJR) 2017: 0.227
Source Normalized Impact per Paper (SNIP) 2017: 0.535

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 74 74 26
PDF Downloads 24 24 13