The Development of Freshwater Deltas and their Environmental and Economic Significance / Rozwój I Znaczenie Środowiskowo-Użytkowe Delt W Zbiornikach Śródlądowych

Open access


The article presents the results of studies concerning the delta forms that arise as a result of the sedimentation of the debris fed to water bodies by watercourses. The study covered several dozen anthropogenic water bodies in the Upper Silesia region, which is well known for its high degree of urbanisation and industrialisation. Basic research work included morphometric measurements of deltas, analyses of the mechanical and chemical composition of delta sediments and analyses of the chemical composition of the common reed growing on the deltas. The research has demonstrated that the deltas exhibit certain characteristics typical of anthropogenic forms that result from the pollutants found in watercourses. In delta sediments, grains of sand usually dominate, but in many cases the share of the < 0.02 mm fraction is as high as ca. 30%. Sediments often contain fine coal and other organic pollutants, which is reflected by high weight loss on ignition. The content of trace elements in delta sediments is usually many times higher than the geochemical background for all types of sedimentary rocks. Deltas are an environment where pollutants accumulate and some of them are assimilated by plants. The content of macro elements in common reed tissues from different deltas does not vary widely while the content of trace elements often results from their content in the sediments. The material that forms deltas can be extracted and in some cases even used as fuel

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Wiatkowski M Paul L. Surface water quality assessment in the Troja River catchment in the context of Wlodzienin Reservoir construction. Pol J Environ Stud. 2009;18(5):923-929.

  • [2] Wiatkowski M Czerniawska-Kusza I. Use of the preliminary Jedlice Reservoir for water protection in the Turawa Reservoir on the Mala Panew River. Oceanol Hydrobiol St. 2009;38(1):83-91. DOI: 10.2478/v10009-009-0006-8.

  • [3] Kasperek R Mokwa M Wiatkowski M. Modelling of pollution transport with sediment on the example of the Widawa River. Arch Environ Prot. 2013;39(2):29-43. DOI: 10.2478/aep-2013-0017.

  • [4] Wiatkowski M Rosik-Dulewska C Kuczewski K Kasperek L. Water quality assessment of Wlodzienin Reservoir in the first year of its operation. Roczn Ochr Środow. 2013;15Part 3:2666-2682.

  • [5] Rzetala M Jagus A Rzetala MA Rahmonov O Rahmonov M Khak V. Variations in the chemical composition of bottom deposits in anthropogenic lakes. Pol J Environ Stud. 2013;22(6):1799-1805.

  • [6] Prieto GFJ. Shoreline forms and deposits in Gallocanta Lake (NE Spain). Geomorphology 1995;11:323-335.

  • [7] Wang J Chen X Zhu X Liu J Chang WYB. Taihu Lake lower Yangtze drainage basin: evolution sedimentation rate and the sea level. Geomorphology 2001;41:183-193. DOI: 10.1016/S0169-555X(01)00115-5.

  • [8] Devi MRK Singh T. Morphotectonic setting of the Ganga Lake Itanagar capital complex Arunachal Himalaya. Geomorphology 2006;76:1-11. DOI: 10.1016/j.geomorph.2005.08.011.

  • [9] Sapota T Håkanson L Aldahan A Possnert G. Sediment flux to Lake Baikal (Siberia Russia): Modeling approach. Geomorphology 2006;80:105-113. DOI: 10.1016/j.geomorph.2005.09.009.

  • [10] Stanley DJ. Nile delta: extreme case of sediment entrapment on a delta plain and consequent coastal land loss. Mar Geol. 1996;129:189-195. DOI: 10.1016/0025-3227(96)83344-5.

  • [11] Saito Y Yang Z Hori K. The Huanghe (Yellow River) and Changjiang (Yangtze River) deltas: a review on their characteristics evolution and sediment discharge during the Holocene. Geomorphology 2001;41:219-231. DOI: 10.1016/S0169-555X(01)00118-0.

  • [12] Liu S Zhang W He Q Li D Liu H Yu L. Magnetic properties of East China Sea shelf sediments off the Yangtze Estuary: Influence of provenance and particle size. Geomorphology 2010;119:212-220. DOI: 10.1016/j.geomorph.2010.03.027.

  • [13] Day JW Barras J Clairain E Johnston J Justic D Kemp GP et al. Implications of global climatic change and energy cost and availability for the restoration of the Mississippi delta. Ecol Eng. 2005;24:253-265. DOI: 10.1016/j.ecoleng.2004.11.015.

  • [14] Stanica A Dan S Ungureanu VG. Coastal changes at the Sulina mouth of the Danube River as of human activities. Mar Pollut Bull. 2007;55:555-563. DOI: 10.1016/j.marpolbul.2007.09.015.

  • [15] Lampert W Rothhaupt KO. Limnology in the Federal Republic of Germany the 24th Congress of the IATAL. Munich: International Association for Theoretical and Applied Limnology; 1989.

  • [16] Owczinnikow GI Pawłow SH Trzcinskij JB. Izmienienije gieołogiczeskoj sriedy w zonach wlijanija angaro-jenisiejskich wodochraniliszcz. Nowosybirsk: Izdatielstwo Nauka; 1999 (in Russian).

  • [17] Fernex F Zarate-del Valle P Ramirez-Sanchez H Michaud F Parron C Dalmasso J et al. Sedimentation rates in Lake Chapala western Mexico: possible active tectonic control. Chem Geol. 2001;177:213-228. DOI: 10.1016/S0009-2541(00)00346-6.

  • [18] Janský B Šobr M. Lakes of the Czech Republik. Prague: Charles University; 2003 (in Czech).

  • [19] James LA. Sediment from hydraulic mining detained by Englebright small dams in the Yuba basin. Geomorphology 2005;71:202-226. DOI: 10.1016/j.geomorph.2004.02.016.

  • [20] Bakoariniaina LN Kusky T Raharimahrfa T. Disappearing Lake Alaotra: Monitoring catastrophic erosion waterway silting and land degradation hazards in Madagascar using Landsat imagery. J Afr Earth Sci. 2006;44:241-252. DOI: 10.1016/j.jafrearsci.2005.10.013.

  • [21] Verstraeten G Bazzoffi P Lajczak A Radoane M Rey F Poesen F et al. Reservoir and pond sedimentation in Europe. In: Soil Erosion in Europe. Boardman J Poesen J editors. Oxford: John Wiley & Sons Ltd.; 2006:757-774.

  • [22] Romashkin PA Williams DF. Sedimentation history of the Selenga Delta Lake Baikal: simulation and interpretation. J Paleolimnol. 1997;18:181-188.

  • [23] Łajczak A. Deltas in dam-retained lakes in the Carpathian part of the Vistula drainage basin. Prace Geograficzne UJ 2006;116:99-109.

  • [24] Rzętała M Jaguś A. New lake district in Europe: origin and hydrochemical characteristics. Water Environ J. 2012;26:108-117. DOI: 10.1111/j.1747-6593.2011.00269.x.

  • [25] Rzętała MA Machowski R Rzętała M. Sedymentacja w strefie kontaktu wód rzecznych i jeziornych na przykładzie zbiorników wodnych regionu górnośląskiego. Sosnowiec: Wydział Nauk o Ziemi Uniwersytetu Śląskiego; 2009 (in Polish).

  • [26] Rzętała MA Jaguś A Rzętała M. Samooczyszczanie wód w procesie tworzenia form deltowych. Roczn Ochr Środow. 2013;15:2510-2525.

  • [27] Kostecki M. Zawiesina jako element zanieczyszczenia antropogenicznego ekosystemu wodnego na przykładzie zbiornika zaporowego Dzierżno Duże (woj. śląskie). Arch Ochr Środ. 2000;26(4):75-94 (in Polish).

  • [28] Rzętała M. Funkcjonowanie zbiorników wodnych oraz przebieg procesów limnicznych w warunkach zróżnicowanej antropopresji na przykładzie regionu górnośląskiego. Katowice: Wyd Uniwersytetu Śląskiego; 2008 (in Polish).

  • [29] Kabata-Pendias A Pendias H. Biogeochemia pierwiastków śladowych. Warszawa: Wyd Nauk PWN; 1999 (in Polish).

  • [30] Magiera T Strzyszcz Z Kostecki M. Seasonal changes of magnetic susceptibility in sediments from Lake Zywiec (south Poland). Water Air Soil Pollut. 2002;141:55-71. DOI: 10.1023/A:1021309301714.

  • [31] Büttner O Becker A Keliner S Kuehn K Wendt-Potthoff K Zachmann DW et al. Geostatistical analysis of surface sediments in an acidic mining lake. Water Air Soil Pollut. 1998;108:297-316. DOI: 10.1023/A:1005145029916.

  • [32] Nguyen HN Leermakers M Osán J Tfrfk S Baeyens W. Heavy metals in Lake Balaton: water column suspended matter sediment and biota. Sci Total Environ. 2005;340:213-230. DOI: 10.1016/j.scitotenv.2004.07.032.

  • [33] Lindström M Håkanson L. A model to calculate heavy metal load to lakes dominated by urban runoff and diffuse inflow. Ecol Model. 2001;137:1-21. DOI: 10.1016/S0304-3800(00)00440-3.

  • [34] Dauvalter V. Heavy metals in lake sediments of the Kola Peninsula Russia. Sci Total Environ. 1994;158:51-61. DOI: 10.1016/0048-9697(94)90044-2.

  • [35] Kosov VI Kosova IV Levinskii VV Ivanov GN Khil’chenko AI. Distribution of heavy metals in Lake Seliger bottom deposits. Water Resour. 2004;31:46-54.

  • [36] Duman F Aksoy A Demirezen D. Seasonal variability of heavy metals in surface sediment of Lake Sapanca Turkey. Environ Monit Assess. 2007;133:277-283. DOI: 10.1007/s10661-006-9580-3.

  • [37] Özmen H Külahci F Cukurovali A Dğgru M. Concentrations of heavy metal and radioactivity in surface water and sediment of Hazar Lake (Elazi˘g Turkey). Chemosphere 2004;55:401-408. DOI: 10.1016/j.chemosphere.2003.11.003.

  • [38] Gantidis N Pervolarakis M Fytianos K. Assessment of the quality characteristics of two lakes (Koronia and Volvi) of N. Greece. Environ Monit Assess. 2007;125:175-181. DOI: 10.1007/s10661-006-9250-5.

  • [39] Taher AG Soliman AA. Heavy metal concentrations in surficial sediments from Wadi El Natrun saline lakes Egypt. Int J Salt Lake Res. 1999;8:75-92.

  • [40] Moalla SMN Awadallah RM Rashed MN Soltan ME. Distribution and chemical fractionation of some heavy metals in bottom sediments of Lake Nasser. Hydrobiologia 1998;364:31-40.

  • [41] Kishe MA Machiwa JF. Distribution of heavy metals in sediments of Mwanza Gulf of Lake Victoria Tanzania. Environ Int. 2003;28:619-625. DOI: 10.1016/S0160-4120(02)00099-5.

  • [42] Ochieng EZ Lalah JO Wandiga SO. Analysis of heavy metals in water and surface sediment in five rift valley lakes in Kenya for assessment of recent increase in anthropogenic activities. B Environ Contam Tox. 2007;79:570-576. DOI: 10.1007/s00128-007-9286-4.

  • [43] Wang H Wang CX Wang ZJ Cao ZH. Fractionation of heavy metals in surface sediments of Taihu Lake East China. Environ Geochem Health. 2004;26:303-309. DOI: 10.1023/B:EGAH.0000039594.19432.80.

  • [44] Chandra Sekhar K Chary NS Kamala CT Suman Raj DS Sreenivasa Rao A. Fractionation studies and bioaccumulation of sediment-bound heavy metals in Kolleru lake by edible fish. Environ Int. 2004;29:1001-1008. DOI: 10.1016/S0160-4120(03)00094-1.

  • [45] Juracek KE Mau DP. Metals trace elements and organochlorine compounds in bottom sediment of Tuttle Creek Lake Kansas USA. Hydrobiologia 2003;494:277-282. DOI: 10.1023/A:1025447223154.

  • [46] An YJ Kampbell DH. Total dissolved and bioavailable metals at Lake Texoma marinas. Environ Pollut. 2003;122:253-259. DOI: 10.1016/S0269-7491(02)00291-9.

  • [47] Roach AC. Assessment of metals in sediments from Lake Macquarie New South Wales Australia using normalisation models and sediment quality guidelines. Mar Environ Res. 2005;59:453-472. DOI: 10.1016/j.marenvres.2004.07.002.

  • [48] Rzetala MA Rahmonov O Jagus A Rahmonov M Rzetala M Machowski R. Occurrence of chemical elements in common reeds (Phragmites australis) as indicator of environmental conditions. Res J Chem Environ. 2011;15(2):610-616.

  • [49] Engloner AI. Structure growth dynamics and biomass of reed (Phragmites australis) - A review. Flora 2009;204:331-346. DOI: 10.1016/j.flora.2008.05.001.

  • [50] Charakterystyka urobku pochodzącego z pogłębiania czaszy zbiornika Dzierżno Duże oraz jego status prawny w aspekcie gospodarki odpadami. Katowice: Ośrodek Badań i Kontroli Środowiska Przedsiębiorstwo Państwowe; 2006.

  • [51] Charakterystyka paliwa węglowego pozyskanego ze zbiornika Dzierżno Duże Portu Gliwickiego oraz sekcji 6 i 5 Kanału Gliwickiego - dokumentacja pracy badawczo-usługowej. Katowice: Główny Instytut Górnictwa; 2004.

Journal information
Impact Factor

IMPACT FACTOR 2018: 1.467
5-year IMPACT FACTOR: 1.226

CiteScore 2018: 1.47

SCImago Journal Rank (SJR) 2018: 0.352
Source Normalized Impact per Paper (SNIP) 2018: 0.907

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 151 63 0
PDF Downloads 82 43 1