Sustainable Approach to Mitigation of CO2 Emission

Open access


The discussion about greenhouse gases emission mitigation focuses on the reduction of fossil fuels usage, which is extremely costly from the economic and social viewpoint. The analyses of CO2 and CH4 fluxes in the environment showed that intensifying natural photosynthesis and respiration process may significantly contribute to the mitigation of greenhouse gases emission. It has been proven that the intensity of photosynthesis in land ecosystems could compensate for the increase of CO2 emission from anthropological sources.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Dasgupta P. Land access and food security for forest dwellers: an economic analysis for India. Problems of Sustainable Development/Problemy Ekorozwoju. 2013;8:27-37.

  • [2] Duran J Golusin M Ivanovic OM Javanovic L Andrejevic A. Renewable energy and socio-economic development in the European Union. Problems of Sustainable Development/Problemy Ekorozwoju. 2013;8(1): 105-114.

  • [3] Ecimovic T Haw R Kondrashin I Raoul W Vivanco GF. Philosophy of the Sustainable Development and the Sustainable Future of Humankind - the Survival of Humanity. Problems of Sustainable Development/Problemy Ekorozwoju. 2014;9(2):7-25. www.ekorozwoj

  • [4] Venkatesh G. Sisyphean struggle or Pyrrhic victory? Problems of Sustainable Development/Problemy Ekorozwoju. 2014;9(2):73-77. www. ekorozwoj

  • [5] Pimentel D. Energy production from maize. Problemy Ekorozwoju/Problems of Sustainable Development. 2012;7(2):15-22.

  • [6] Lindzen RS. Global warming: the origin and nature of the alleged scientific consensus. Problems of Sustainable DevelopmenťProblemy Ekorozwoju. 2010;5:13-28.

  • [7] Gruber N Hauri C Lachkar Z Loher D Frolicher T Plattner GK. Rapid progression of ocean acidification in the California Current System. Science. 2012;337: 220-223. DOI: 10.1126/science. 1216773.

  • [8] IPCC. Fourth Assessment Report. Carbon and other Biochemical Cycles. 2014.

  • [9] House JI Prentice IC Le Quere C. Maximum impacts of future reforestation or deforestation on atmospheric CO2. Global Change Biol. 2002;8:1047-1052. DOI: 10.1046/j.1365-2486.2002.00536.x.

  • [10] Canadell JG Raupach MR. Managing forests for climate mitigation. Science. 2008;320:1456-1457. DOI: 10.1126/science. 1155458.

  • [11] Boyd PW Jickells T Law CS Blain S Boyle EA Buesseler KO et al. Mesoscale iron enrichment experiments 1993-2005: Synthesis and future directions. Science. 2007;315:612-617. DOI: 10.1126/science. 1131669.

  • [12] Smetacek V Klaas C Stras VH Assmy P Montresor M Cisewski B et al. Deep carbon export from a Southern Ocean iron-fertilized diatom bloom. Nature. 2012:487;313-319. DOI: 10.1038/nature11229.

  • [13] Buesseler KO Andrews JE Pike SM Charette MA. The effects of iron fertilization on carbon sequestrion in the Southern Ocean. Science. 2004;304:414-417. DOI: 10.1126/science.1086895.

  • [14] Blain S Quéguiner B Armand L Belviso S Bombled B Bopp L et al. Effect of natural iron fertilization on carbon sequestration in the Southern Ocean. Nature. 2007;446:1070-1074. DOI: 10.1038/nature05700.

  • [15] Zeebe RE Archer D. Feasibility of ocean fertilization and its impact on future atmospheric CO2 levels. Geophys Res Lett. 2005;32:970-978. DOI: 10.1029/2005GL022449.

  • [16] Aumont O Boop L. Globalizing results from ocean in situ iron fertilization studies. Global Biogeochem Cycles. 2006;20:GB2017. DOI: 10.1029/2005GB002591.

  • [17] Jin X Gruber N. Offsetting the radiative benefit of ocean iron fertilization by enhancing N2O emissions. Geophys Res Lett. 2003;30(24):OCE3-1-OCE3-4. DOI: 10.1029/2003GL018458.

  • [18] Lovelock JE Rapley CG. Ocean pipes could help the Earth to cure itself. Nature. 2007;449:403-403. DOI: 10.1038/449403a.

  • [19] Kelemen PB Matter J. In situ carbonation of peridotite for CO2 storage. Proc National Acad Sci USA. 2008;105:17295-17300. DOI: 10.1073/pnas.0805794105.

  • [20] Schuiling RD Krijgsman P. Enhanced weathering: An effective and cheap tool to sequester CO2. Climate Change. 2006;74:349-354. DOI: 10.1007/s10584-005-3485-y.

  • [21] Renforth P. The potential of enhanced weathering in the UK. Int J Greenhouse Gas Control. 2012;10:229-243. DOI: 10.1016/j.ijggc.2012.06.011.

  • [22] Stępniewski W Pawłowska M. A Possibility to Reduce Methane Emission from Landfills by Its Oxidation in the Soil Cover. Chemistry from the Protection of the Environment 2. Environmental Science Research. New York: Plenum Press; 1996;51:75-92.

  • [23] Pawłowska M Siepak J. Enhancement of methanogenesis at a municipal landfill site by addition of sewage sludge. Environ Eng Sci. 2006;23(4):673-679. DOI: 10.1089/ees.2006.23.673.

  • [24] Pawłowska M Siepak J. Biochemical reduction of methane emission from landfills. Environ Eng Sci. 2006;23(4):666-672. DOI: 10.1089/ees.2006.23.666.

  • [25] Pawłowska M Rożej A Stępniewski W. The effect of bed properties on methane removal in an aerated biofilter - model studies. Waste Manage. 2011;31(5):903-913. DOI: 10.1016/j.wasman.2010.10.005.

  • [26] Pawłowska M Siepak J Pawłowski L Pleczyński J. Method for intensification of methane production in refuse collection depot. 2008. Patent no EP 08165558.

Journal information
Impact Factor

IMPACT FACTOR 2018: 1.467
5-year IMPACT FACTOR: 1.226

CiteScore 2018: 1.47

SCImago Journal Rank (SJR) 2018: 0.352
Source Normalized Impact per Paper (SNIP) 2018: 0.907

Cited By
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 224 145 0
PDF Downloads 77 67 0