Translocation of Cations During Sorption of Copper in the System Solution - Algae (Spirogyra sp.)/Translokacja Kationów Podczas Procesu Sorpcji Miedzi W Układzie Roztwór - Glony (Spirogyra Sp.)

Open access


Kinetics of the sorption of copper cations in Spirogyra sp. algae was analysed, together with the accompanying processes of hydrogen cations sorption and releasing to the solution the cations bonded in the algae: Na+, Mg2+, K+ and Ca2+. It was established that, in a static system, at the fixed proportion of algae mass to the solution volume, these processes occur simultaneously, however presumably the quantity of the released salts influences the parameters of heterophase equilibrium of ion exchange. In the experiment conditions, the quantity of the released cations was nearly 10 times larger than the quantity of the sorbed cations. The equilibrium parameters, determined from the model of pseudo second order reaction, were compared with the parameters obtained after 30 min of the process duration, ie at relatively stable indications of measuring equipment. On the example of the sorbed copper, the difference is approximately 8%. It was confirmed that the solution conductivity is a good parameter for the estimation of the state close to equilibrium.

[1] Hollar S, editor. A Closer at Bacteria, Algae, and Protozoa. New York: Britannica Educational Publishing; 2012.

[2] Silva PC, Basson PW, Moe RL. Catalogue of the Benthic Marine Algae of the Indian Ocean. California, USA: University of California Publications in Botany; 1996.

[3] Bellinger GE, Sigee CD. Freshwater Algae. Identification and Use as Bioindicators. Chichester, UK: John Wila & Sons; 2010.

[4] Barsanti L, Gualtieri P. Algae. Anatomy, Biochemistry and Biotechnology. Boca Raton, FL: Taylor & Francis; 2006.

[5] Wang J, Chen C. Biosorbents for heavy metals removal and their future. Biotechnol Advan. 2009;27:195-226. DOI:10.1016/j.biotechadv.2008.11.002

[6] Kłos A, Rajfur M. Influence of hydrogen cations on kinetics and equilibria of heavy-metal sorption by algae - sorption of copper cations by the alga Palmaria palmate. J Appl Phycol. 2013;25(5):1387-1394. DOI: 10.1007/s10811-012-9970-6.

[7] Chakraborty S, Bhattacharya T, Singh G, Maity JP. Benthic macroalgae as biological indicators of heavy metal pollution in the marine environments: A biomonitoring approach for pollution assessment. Ecotoxicol Environ Saf. 2014;100(1):61-68. DOI: 10.1016/j.ecoenv.2013.12.003.

[8] Bhatnagar M, Bhardwaj N, Biodiversity of algal flora in River Chambal at Kota, Rajasthan. Nature Environ Pollut Technol. 2013;12(3):547-549.

[9] Muradov N, Taha M, Miranda AF, Kadali K, Gujar A, Rochfort S, et al. Dual application of duckweed and azolla plants for wastewater treatment and renewable fuels and petrochemicals production. Biotechnol Biofuels. 2014;7(1):30. DOI: 10.1186/1754-6834-7-30.

[10] Pitre D, Boullemant A, Fortin C. Uptake and sorption of aluminium and fluoride by four green algal species. Chem Central J. 2014;8(1):8. DOI:10.1186/1752-153X-8-8.

[11] Gokhale SV, Jyoti KK, Lele SS. Kinetic and equilibrium modeling of chromium(VI) biosorption on fresh and spent Spirulina platensis/Chlorella vulgaris biomass. Bioresour Technol. 2008;99:3600-3608. DOI: 10.1016/j.biortech.2007.07.039.

[12] das Graças Nunes Matos M, Diniz VG, Moraes de Abreu CA, Knoechelmann A, Lins da Silva V. Bioadsorption and ion exchange of Cr3+ and Pb2+ solutions with algae. Adsorption. 2009;15:75-80.

[13] Davis TA, Volesky B, Mucci A. A review of the biochemistry of heavy metal biosorption by brown algae. Water Res. 2003;37:4311-4330. DOI: 10.1016/S0043-1354(03)00293-8.

[14] Kuyucak N, Volesky B. Accumulation of cobalt by marine alga. Biotechnol Bioeng. 1989;33(7):809-14.

[15] Kuyucak N, Volesky B. Desorption of cobalt-laden algal biosorbent. Biotechnol Bioeng. 1989;33(7):815-22.

[16] Pavasant P, Apiratikul R, Sungkhum V, Suthiparinyanont P, Wattanachira S, Marhaba TF. Biosorption of Cu2+, Cd2+, Pb2+, and Zn2+ using dried marine green macroalga Caulerpa lentillifera. Bioresour Technol. 2006;97:2321-2329.

[17] El-Sikaily A, El Nemr A, Khaled A, Abdelwehab O. Removal of toxic chromium from wastewater using green alga Ulva lactuca and its activated carbon. J Hazard Mater. 2007;148:216-228.

[18] Apiratikul R, Pavasant P. Batch and column studies of biosorption of heavy metals by Caulerpa lentillifera. Bioresour Technol. 2008;99:2766-2777.

[19] Sarı A, Tuzen M. Biosorption of cadmium(II) from aqueous solution by red algae (Ceramium virgatum): Equilibrium, kinetic and thermodynamic studies. J Hazard Mater. 2008;157:448-454.

[20] Senobari Z, Jafari N, Ebrahimzadeh MA. Biosorption of Ni(II) from aqueous solutions by marine algae Cladophora glomerata (L.) kütz. (Chlorophyta). Inter J Algae. 2014;16(2):181-192. DOI: 10.1615/InterJAlgae.v16.i2.80.

[21] Edris G, Alhamed Y, Alzahrani A. Biosorption of cadmium and lead from aqueous solutions by Chlorella vulgaris biomass: Equilibrium and kinetic study. Arabian J Sci Eng. 2014;39(1):7-93.

[22] Kizilkaya B, Akgül R, Turker G. Utilization on the removal Cd(II) and Pb(II) ions from aqueous solution using nonliving Rivularia bulata algae. J Disper Sci Technol. 2013;34(9):257-1264.

[23] Rajfur M, Kłos A, Wacławek M. Sorption of copper(II) ions in the biomass of alga Spirogyra sp.. Bioelectrochemistry. 2012;87:65-70. DOI: 10.1016/j.bioelechem.2011.12.007.

[24] Gupta VK, Rastogi A, Saini VK, Jain N. Biosorption of copper(II) from aqueous solutions by Spirogyra species. J Colloid Interface Sci. 2006;296:59-63. DOI: 10.1016/j.jcis.2005.08.033.

[25] Ho YS. Review of second-order models for adsorption systems. J Hazard Mater. 2006;136(3):681-689. DOI:10.1016/j.jhazmat.2005.12.043.

[26] Kłos A, Rajfur M, Wacławek M, Wacławek W. Ion exchange in lichen surrounding. Ecol Chem Eng A. 2007;14(7):645-667.

[27] Javanbakht V, Alavi SA, Zilouei H. Mechanisms of heavy metal removal using microorganisms as biosorbent. Water Sci Technol. 2014;69(9):1775-1787.

[28] He J, Chen JP. A comprehensive review on biosorption of heavy metals by algal biomass: Materials, performances, chemistry, and modeling simulation tools. Bioresour Technol. 2014;160:67-78. DOI: 10.1016/j.biortech.2014.01.068.

[29] Hackbarth FV, Girardi F, de Souza SMAGU, de Souza AAU, Boaventura RAR, Vilar VJP. Marine macroalgae Pelvetia canaliculata (Phaeophyceae) as a natural cation exchanger for cadmium and lead ions separation in aqueous solutions. Chem Eng J. 2013;242:294-305.

[30] Plazinski W. Equilibrium and kinetic modeling of metal ion biosorption: On the ways of model generalization for the case of multicomponent systems. Adsorption. 2013;19(2-4):659-666. DOI: 10.1007/s10450-013-9489-4.

[31] Ho YS. Second-order kinetic model for the sorption of cadmium onto tree fern: a comparison of linear and non-linear methods. Water Res. 2006;40(1):119-125. DOI:10.1016/j.watres.2005.10.040

[32] Ho YS, McKay G. Sorption of dye from aqueous solution by peat. Chem Eng J. 1998;70 (2):115-124. DOI: 10.1016/S0923-0467(98)00076-1.

[33] Ho YS, McKay G. Pseudo-second order model for sorption processes. Process Biochem. 1999;34(5):451-465. PII: S0032-9592(98)00112-5.

[34] Ho YS, McKay G. The kinetics of sorption of divalent metal ions onto sphagnum moss peat. Water Res. 2000;34(3):735-742. PII: S0043-1354(99)00232-8.

Ecological Chemistry and Engineering S

The Journal of Society of Ecological Chemistry and Engineering

Journal Information

5-year IMPACT FACTOR: 0.815

CiteScore 2017: 0.79

SCImago Journal Rank (SJR) 2017: 0.227
Source Normalized Impact per Paper (SNIP) 2017: 0.535


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 135 135 20
PDF Downloads 24 24 2