Free of Volatile Organic Compounds Protection against Moisture in Building Materials/Zabezpieczenia Przegród Budowlanych Przed Wilgocią Wolne Od Lotnych Związków Organicznych

Open access


The article presents information about moisture protection of building materials. The discussed parameters determining the efficiency of the water protection are material porosity, water absorptivity and surface condition of building materials. Moreover the ecological aspect of hydrophobic VOC-free preparations available on the market has been underlined. The first part of the article is a description of moisture problem in the building envelopes and the possibilities of its prevention. The special attention is put on the electric methods of moisture estimation with a special emphasis on the Time Domain Reflectometry (TDR) method. The second part of the article is devoted an experiment of model red-brick walls exhibited on capillary uptake process. For the experiment three model red-brick walls were built and prepared for water uptake process. The experiment was monitored by the capacitive and surface TDR probes thanks to which the necessity of sampling and material destruction could be avoided. Conducted experiments show the progress of water uptake phenomenon in the model walls which differ in type of protection against moisture and prove the potential of the non-invasive measurements using the surface TDR probes. Basic physical parameters of the applied bricks were determined together with the reflectometric measurements. Furthermore, Scanning Electron Microscopy (SEM) was used to analyze the hydrophobic layer continuity.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Köliö A Pakkala TA Lahdensivu J Kiviste M. Durability demands related to carbonation induced corrosion for finnish concrete buildings in changing climate. Eng Structures. 2014;62-63:42-52. DOI: 10.1016/j.engstruct.2014.01.032.

  • [2] Rokiel M. Hydroizolacje w budownictwie. Warszawa: Wyd. Medium; 2006.

  • [3] Nayara SK Bachmann J Aguado A Toralles-Carbonari B. Evaluation of the wettability of mortar component granular materials through contact angle measurements. Cement and Concrete Res. 2012;42:1611-1620. DOI: 10.1016/j.cemconres.2012.09.001.

  • [4] MacMullen J Zhang Z Rirsch E Dhakal HN Bennett N. Brick and mortar treatment by cream emulsion for improved water repellence and thermal insulation. Energy and Buildings. 2011;34:1560-1565. DOI: 10.1016/j.enbuild.2011.02.014.

  • [5] Abuku M Janssen H Roels S. Impact of wind-driven rain on historic brick wall buildings in a moderately cold and humid climate: Numerical analyses of mould growth risk indoor climate and energy consumption. Energy and Buildings. 2009;41:101-110. DOI: 10.1016/j.enbuild.2008.07.011.

  • [6] Płuska I. Konserwacja kamienia w architekturze i rzeźbie. Renowacje i Zabytki. 2005;13(1):119-129.

  • [7] Frattolillo A Giovinco G Mascolo MC Vitale A. Effects of hydrophobic treatment on thermophysical properties of lightweight mortars. Experimental Thermal Fluid Sci. 2005;30:27-35.

  • [8] Matziaris K Stefanidou M Karagiannis G. Impregnation and superhydrophobicity of coated porous low-fired clay building materials. Progress in Organic Coatings. 2011;72:181-192 DOI: 10.1016/2011.03.012.

  • [9] Vejmelkova E Konakova D Čachova M Keppert M Černý R. Effect of hydrophobization on the properties of lime-metakaolin plasters. Construction Building Mater. 2012;37:556-561 DOI: 10.1016/2012.07.097.

  • [10] Barnat-Hunek D Klimek B. Hydrofobizacja cegły ręcznie formowanej. Materiały Budowlane. 2012;3:19-20.

  • [11] Maravelaki-Kalaitzaki P. Hydraulic lime mortars with siloxane for waterproofing historic masonry. Cement Concrete Res. 2007;37:283-290. DOI: 10.1016/j.cemconres.2006.11.007.

  • [12] Baltazar L Santana J Lopes B Correia JR Rodrigues MP. Superficial protection of concrete with epoxy resin impregnations: influence of the substrate roughness and moisture. Materials and Structures/Materiaux et Constructions. 2014:1-16 (in press). DOI 10.1617/s11527-014-0284-9.

  • [13] Coronado MJA García Santos A Padial Molina JF. The influence of water-repellent products in the suction of ceramic brick face side. Boletin de la Sociedad Espanola de Ceramica y Vidrio. 2013;52(4):XV-XVIII. DOI: 10.3989/cyv.2013.v52.i4.1221.

  • [14] Felekoğlu B. A method for improving the early strength of pumice concrete blocks by using alkyl alkoxy silane (AAS). Construction Building Mater. 2012;28:305-310. DOI: 10.1016/2011.07.026.

  • [15] Polverajan M Avci S. Zero-VOC nonionic associative rheology modifiers for the next generation of environmentally friendly coatings. Paint & Coatings Industry. 2012;28(3):20-26.

  • [16] Chen SP Liu WT Ou-Yang CF Chang JS Wang JL. Optimizing the emission inventory of volatile organic compounds (VOCs) based on network observations. Atmospheric Environ. 2014;84:1-8. DOI: 10.1016/2013.10.059.

  • [17] Faber J Brodzik K Gołda-Kopek A Łomankiewicz D. Air pollution in new vehicles as a result of VOC emissions from interior materials. Polish J Environ Stud. 2013;22(6):1701-1709.

  • [18] Zabiegała B. Organic compounds in indoor environments. Polish J Environ Stud. 2006;383(15):383-393.

  • [19] Jones AP. Indoor air quality and health. Atmos Environ. 1999;4535(33).

  • [20] Levin H. Indoor air pollutants. Part 1: General description of pollutants levels and standards. Ventilation Information Paper 2. 2003.

  • [21] Directive 2004/42/CE of the European Parliament and of the Council of 21 April 2004 on the limitation of emissions of volatile organic compounds due to the use of organic solvents in certain paints and varnishes and vehicle refinishing products and amending Directive 1999/13/EC.

  • [22] Osterholtz FD Pohl ER. Kinetics of the hydrolysis and condensation of organofunctional alkoxysilanes: a review. J Adhes Sci Technol. 1992;6: 127-149 DOI: 10.1163/156856192X00106

  • [23] Kaesler KH. Siloxanes: permanent protection for concrete. Surf Coat Inter. 2008;91(2):84-86.

  • [24] Yoshinobu N Yuji N Hiroaki H Syuji F Mariko S. Surface analysis of silane nanolayer on silica particles using H Pulse NMR. J Adhesion Sci & Technol. 2011;25(19):2703-2716. DOI: 10.1163/016942411X556079.

  • [25] Tittarelli F Moriconi G. The effect of silane-based hydrophobic admixture on corrosion of reinforcing steel in concreto. Cement Concrete Res. 2008;38:1354-1357. DOI: 10.1016/j.cemconres.2008.06.009.

  • [26] Skierucha W Wilczek A. A FDR sensor for measuring complex soil dielectric permittivity in the 10-500 MHz frequency range. Sensors (Basel). 2010;10(4):3314-3329. DOI: 10.3390/s100403314.

  • [27] Topp GC Davis JL Annan AP. Electromagnetic determination of soil water content: Measurements in coaxial transmission lines. Water Resources Res. 1980;16:574-582.

  • [28] Malicki MA Plagge R Roth CH. Improving the calibration of dielectric TDR soil moisture determination taking into account the solid soil. European J Soil Sci. 1996;47:357-366.

  • [29] Malicki MA Skierucha W. A manually controlled TDR soil moisture meter operating with 300 ps rise-time needle pulse. Irrig Sci. 1989;10(2):153-163. DOI: 10.1007/BF00265691.

  • [30] Suchorab Z Sobczuk H Rożej A Łagód G. Comparison of reflectometric and gravimetric methods for examination of sewage sludge additions influence on water properties of reclamated soils. Ecol Chem Eng A. 2009;16(4):257-264.

  • [31] Skierucha W Wilczek A. Alokhina O. Calibration of a TDR probe for low soil water content measurements. Sensors and Actuators A. 2008;147:544-552. DOI: 10.1016/j.sna.2008.06.015.

  • [32] Skierucha W Wilczek A Szypłowska A Sławiński C Lamorski K. A TDR-based soil moisture monitoring system with simultaneous measurement of soil temperature and electrical conductivity. Sensors (Basel). 2012;12(10):13545-66 DOI: 10.3390/s121013545.

  • [33] Udawatta RP Anderson SH Motavalli PP Garrett HE. Calibration of a water content reflectometer and soil water dynamics for an agroforestry practice. Agroforest Syst. 2011;82(1):61-75 DOI: 10.1007/s10457-010-9362-3.

  • [34] Černý R. Time-domain reflectometry method and its application for measuring moisture content in porous materials: A review. Measurement. 2009;42:329-336 DOI: 10.1016/2008.08.011.

  • [35] Suchorab Z Jarmuła M Sobczuk H Pavlík Z Černý R. Zastosowanie metody TDR do pomiaru podciągania kapilarnego w ściance modelowej z cegły ceramicznej pełnej. Proc ECOpole. 2009;3(1):207-213.

  • [36] Suchorab Z Widomski M Łagód G Sobczuk H. Capillary rise phenomenon in aerated concrete. Monitoring and simulations. Proc ECOpole 2010;4(2):285-290.

  • [37] Pavlík Z Jiřičková M Černý R Sobczuk H Suchorab Z. Determination of moisture diffusivity using the Time Domain Reflectometry (TDR) method. J Building Physics. 2006;30(1):59-70. DOI: 10.1177/1744259106064356.

  • [38] Suchorab Z Sobczuk H Černý R Pavlik Z Plagge R. Noninvasive moisture measurement of building materials using TDR method. Proc. of the 8th International Conference on Electromagnetic Wave Interaction with Water and Moist Substances June 1-5 Espoo Finland 2009 147-155.

  • [39] EN 1936:2010. Natural stone test methods - Determination of real density and apparent density and of total and open porosity.

  • [40] Suchorab Z. Laboratory measurements of moisture in a model red-brick wall using the surface TDR probe. Proc ECOpole. 2013;7(1):171-176.

  • [41] Suchorab Z Jedut A Sobczuk H. Water content measurement in building barriers and materials using surface TDR probe. Proc ECOpole. 2008;2(1):123-127.

Journal information
Impact Factor

IMPACT FACTOR 2018: 1.467
5-year IMPACT FACTOR: 1.226

CiteScore 2018: 1.47

SCImago Journal Rank (SJR) 2018: 0.352
Source Normalized Impact per Paper (SNIP) 2018: 0.907

Cited By
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 290 85 2
PDF Downloads 95 39 0