Operational Model for Atmospheric Transport and Deposition of Air Pollution/ Operacyjny Model Atmosferycznego Transportu I Depozycji Zanieczyszczeń

Open access

Abstract

An assessment of the current state of natural environment affected by air pollution, as well as, forecasts of pro-ecologic, economic and social activities are very often performed using models for atmospheric transport and deposition of air pollutants. In the present paper, we present an operational dispersion model developed at the Institute of Meteorology and Water Management in Warsaw. The basic assumptions and principles of the model are described together with the operational domain and examples of model applications. Two examples of model application are described and discussed here. The first, application is a simulation of the atmospheric transport and deposition of the radioactive isotopes released into the atmosphere during the Chernobyl Accident in 1998. The second example is related to simulation of atmospheric transport of the tracer released into the air during the ETEX experiment. These two examples and previous applications of the model showed that presented dispersion model is fully operational, not only for long term applications, but especially for emergency situations, like nuclear accidents or volcanic eruptions affecting Polish territory

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Zwoździak J Zwoździak A Kmieć G Kasperczyk K. Some observations of pollutant fluxes over the Sudeten south-western Poland. Water Air and Soil Pollut. 1995;85:2009-2013. DOI: 10.1007/BF01186129.

  • [2] Eliassen A Saltbones J. Modelling of long-range transport of sulphur over Europe: A two year model run and some model experiments. Atmospheric Environ. 1983;17:1457-1473 DOI: 10.1016/0004-6981(83)90299-8.

  • [3] Simpson D Benedictow A Berge H Bergström R Emberson LD Fagerli H et al. The EMEP MSC-W chemical transport model - Part 1: Model description. Atmos Chem Phys Discuss. 2012;12:3781-3874 DOI: 10.5194/acpd-12-3781-2012.

  • [4] EMEP Status Report. Transboundary acidification eutrophication and ground level ozone in Europe in 2010. Joint MSC-W & CCC & CEIP Report 1/2012. Oslo Norway: Meteorological Synthesizing Centre - West; 2012.

  • [5] Travnikov O Ilyin I. Regional model MSCE-HM of heavy metal transboundary air pollution in Europe. EMEP/MSC-E Technical Report 6/2005 2005.

  • [6] Gusev A Mantseva E Shatalov V Strukov B. Regional Multicompartment Model MSCE-POP. EMEP/MSC-E Technical Report 5/2005 2005.

  • [7] EMEP web page: http://www.emep.int 2012.

  • [8] Bartnicki J Semeena VS Fagerli H. Atmospheric deposition of nitrogen to the Baltic Sea in the period 1995-2006. Atmos Chem Phys. 2011;11:10057-10069. DOI: 10.5194/acp-11-10057-2011.

  • [9] European Environment Agency. Air quality in Europe - 2012 report. EEA report No. 4/2012 2012. DOI: 10.2800/55823.

  • [10] Łobocki L Strużewska J Zdunek M Kamiński J Lupu A Neary L. Multiscale meteorological modelling for the "Health effects of air pollution - an integrated methodology" project in Kraków Poland 2005. In: Granier C Monks P Tarasova O Tuncel S Borrell P editors. Air Quality in Eastern Europe. ACCENT/JRC Expert Workshop. ACCENT Secretariat Report 8; 2006.

  • [11] Côté J Gravel S Méthot A Patoine A Roch M Staniforth A. The operational CMC-MRB Global Environmental Multiscale (GEM) model: Part I - Design considerations and formulation. Mon Wea Rev. 1998;126:1373-1395. DOI:10.1175/1520-0493(1998)1262.0.CO;2.

  • [12] Kamiński JW Plummer D Neary L McConnell JC Strużewska J Łobocki L. First application of MC2-AQ to multiscale air quality modelling over Europe. Phys Chem Earth. 2002;27:1517-1524. DOI: 10.1016/S1474-7065(02)00159-6.

  • [13] Kamiński JW Neary L Strużewska J McConnell JC Lupu A Jarosz L et al. GEM-AQ an on-line global multiscale chemical weather modeling system: model description and evaluation of gas phase chemistry processes. Atmos Chem Phys. 2008;8(12):3255-3281. DOI: 10.5194/acp-8-3255-200.

  • [14] Strużewska J Kamiński JW. Impact of urban parameterization on high resolution air quality forecast with the GEM - AQ model. Atmos Chem Phys. 2012;12:10387-10404. DOI:10.5194/acp-12-10387-2012.

  • [15] Juda-Rezler K Reizer M Huszar P Krüger BC Zanis P Syrakov D et al. Modelling the effects of climate change on air quality over Central and Eastern Europe: concept evaluation and projections. Clim Res. 2012;53:179-203. DOI: 10.3354/cr01072.

  • [16] Huszar P Juda-Rezler K Halenka T Chervenkov H Syrakov D Krüger BC et al. Effects of climate change on ozone and particulate matter over Central and Eastern Europe. Clim Res. 2011;50:51-68. DOI: 10.3354/cr01036.

  • [17] Ryall DB Maryon RH. The NAME2 dispersion model: a scientific overview. UK Meteorological Office. MetO(Apr) Turbulence and Diffusion note 217b; 1996.

  • [18] Maryon RH Smith JB Conway BJ Goddard DM. The United Kingdom Nuclear Accident Model. Prog Nucl Energy. 1991;26:85-104. DOI: 10.1016/0149-1970(91)90043-O.

  • [19] Robertson L Langner J Engardt M. An Eulerian Limited-Area atmospheric transport model. J Appl Meteorology. 1998;38:190-210. DOI: 10.1175/1520-0450(1999)038<0190:AELAAT>2.0.CO;2.

  • [20] Stohl A Forster C Frank A Seibert P Wotawa G. Technical Note: The Lagrangian particle dispersion model FLEXPART version 6.2. Atmos Chem Phys. 2005;5:2461-2474. DOI:10.5194/acp-5-2461-2005.

  • [21] Sofiev M Siljamo P Valkama I Ilvonen M Kukkonen J. A dispersion modelling system SILAM and its evaluation against ETEX data. Atmos Environ. 2006;40:674-685. DOI: 10.1016/j.atmos.env.2005.09.069.

  • [22] Sørensen JH Baklanov A Hoe S. The Danish Emergency Response Model of the Atmosphere (DERMA). J Environ Radioactivity. 2007;96:122-129. DOI: 10.1016/j.jenvrad.2007.01.030.

  • [23] Persson Ch Robertson L Thaning L. Model Simulation of Air and Ground Contamination Associated with Nuclear Weapons. An Emergency Preparedness Model. SMHI Report No 95. Norrkoping Sweden: Swedish Meteorological and Hydrological Institute; 2000.

  • [24] Sørensen JH Jensen CÃ Mikkelsen T Mackay D Donaldson AI. Modelling the atmospheric spread of footand- mouth disease virus for emergency preparedness. Phys Chem Earth. 2001;26:93-97. DOI: 10.1016/S1464-1909(00)00223-9.

  • [25] Jones AR Thomson DJ Hort M Devenish B. The U.K. Met Office's next-generation atmospheric dispersion model NAME III In: Borrego C Norman AL editors. Air Pollution Modeling and its Application XVII (Proceedings of the 27th NATO/CCMS International Technical Meeting on Air Pollution Modelling and its Application). Springer; 2007:580-589.

  • [26] Sofiev M Vankevich R Lotjonen M Prank M Petukhov V Ermakova T et al. An operational system for the assimilation of satellite information on wild-land fires for the needs of air quality modelling and forecasting. Atmos Chem Phys. 2009;9:6833-6847. DOI: 10.5194/acp-9-6833-2009.

  • [27] Galmarini S Bianconi R Klug W Mikkelsen T Addis R Andronopoulos S et al. ENSEMBLE dispersion forecasting Part I: concept approach and indicators. Atmos Environ. 2004;38(28):4607-4617. DOI: 10.1016/j.atmosenv.2004.05.030.

  • [28] Galmarini S Bianconi R Klug W Mikkelsen T Addis R Andronopoulos S et al. Can the confidence in long range atmospheric transport models be increased? The Pan-European experience on ENSEMBLE. Radiation Protect Dosimet. 2004;109(1-2):19-24. DOI: 10.1093/rpd/nch261.

  • [29] Mazur A. Unified model for atmospheric transport of pollutants over Poland (In Polish: Zunifikowany model atmosferycznego transportu zanieczyszczeń dla Polski. Rozprawa doktorska) doctoral dissertation. Warszawa: IMWM; 2008.

  • [30] Mazur A Hrehoruk J. Regional model for atmospheric transport of heavy metals over Poland. Ecol Chem Eng. 1997;4(4):529-549.

  • [31] Mazur A Bartnicki J Zwoździak J. Atmospheric aerosol dispersion models and their applications to environmental risk assessment. Environ Medicine. 2014;17(1):7-15.

  • [32] Zanetti P. Air Quality Modeling. Theories Methodologies Computational Techniques and Available Databases and Software. Vol. I - Fundamentals. Paolo Zanetti editor. The EnviroComp Institute; 2003.

  • [33] Berge E Tarrasón L. An Evaluation of Eulerian Advection Methods for the Modelling of Long Range Transport of Air Pollution. EMEP/MSC-W Note 2/92. Meteorological Synthesizing Centre - West. Oslo Norway; 1992.

  • [34] Atanassov D Spassova T. Testing of numerical advection schemes and splitting techniques used in pollution dispersion modelling on an analytic solution. Inter J Environ and Pollut. 2003;20:96-104. DOI: 10.1504/IJEP.2003.004254.

  • [35] Bott A. A positive definite advection scheme obtained by nonlinear renormalization of the advective fluxes. Mon Wea Rev. 1989;117:1006-1015. DOI: 10.1175/1520-0493(1989)117<1006:APDASO>2.0.CO;2.

  • [36] Bott A. Monotone flux limitation in the area preserving flux form advection algorithm. Mon Wea Rev. 1992;120:2592-2602. DOI: 10.1175/1520-0493(1992)120<2592:MFLITA>2.0.CO;2.

  • [37] Potter D. Computational Physics. New York: J. Wiley & Sons; 1973.

  • [38] Schaettler U Doms G. The Nonhydrostatic Limited-Area Model LM (Lokal-Modell) of DWD. DWD documents; 2000.

  • [39] Strupczewski A. The causes and course of the accident at the Chernobyl nuclear power-station with reactor RBMK. Electrotechnical Review. 1987;8(5):145-148.

  • [40] OECD NEA. http://www.oecd-nea.org/rp/chernobyl/c02.html Chernobyl: Assessment of Radiological and Health Impact 2002 Update of Chernobyl: Ten Years On.

  • [41] Draxler R Stunder B Rolph G Stein A Taylor A. HYSPLIT4 User’s Guide Version 4. Last Revision March 2012 http://www.arl.noaa.gov/documents/reports/hysplit_user_guide.pdf 2012.

  • [42] Girardi F Archer G Graziani G Klug W Mosca S Nodop K. The European Long Range Tracer Experiment (ETEX) Preliminary Evaluation of Model Intercomparison Exercise Conference Proc. In: Proc of the 21st International Technical Meeting on Air Pollution Modelling and its Application. AMS NATO. 6-10 November 1995. Baltimore Maryland USA: Elsevier Publisher; 1995.

  • [43] Graziani G Galmarini S Grippa G Klug W. Real-Time Long-Range Dispersion Model Evaluation of The ETEX Second Release. Office for Official Publications of the European Communities; 1998.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 1.467
5-year IMPACT FACTOR: 1.226

CiteScore 2018: 1.47

SCImago Journal Rank (SJR) 2018: 0.352
Source Normalized Impact per Paper (SNIP) 2018: 0.907

Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 191 71 1
PDF Downloads 87 45 1