Open Access

Numerical Study on Thermal Environment in Mine Gob Under Coal Oxidation Condition


Cite

The most feared of hazards in underground mines are those of fires and explosions. This study focuses on the temperature-rising process of residual coal under spontaneous combustion condition in coal mine gob. A numerical model has been established considering the chemical reaction, heat transfer and components seepage flow. The temperature distributions and maximum values for different positrons at various times have been calculated by using the coupled model. An experimental model has been also developed for model calibration. The validation indicates the numerical model is accurate and suitable for solving the temperature-rising problem in coalmines. The simulation results show that high temperature zone appears at the air intake roadway side in the gob and enlarging the ventilation flux increases the risk of self-ignition of coal. The research results can be used to predict the temperature-rising of coal spontaneous combustion and coal resources prevention.

ISSN:
1898-6196
Language:
English