Wet Oxidation of Dairy Sewage: The Kinetic Study of Decomposition of the Milk Components

Open access

Abstract

The article presents the results of kinetic studies of the wet oxidation process of dairy sewage. The dairy sewage, obtained straight from the production line, was subjected to oxidation at pH close to the natural value of 7. Experiments were carried out in a stirred batch tank reactor at the oxygen partial pressure equal to 1 MPa and at temperature ranging from 473 to 593 K. The effectiveness of organic compounds decomposition was estimated based on the measurement of TOC. The kinetics of decomposition of milk components, ie lactose, protein and fat, as well as the kinetics of oxidation of intermediate products was the aim of the study. Measurement of the concentration of protein, fat and lactose was done with a milk composition analyzer, calibrated in relation to the dairy sewage. The obtained results were used to develop a mathematical model of wet oxidation of dairy sewage, including the group of analyzed compounds.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Parzonko A. The state and the tendencies of changes in production of milk in the world Annals of Agricult Sci - Series G. 2009;96(1):16-26.

  • [2] International Dairy Federation: Bulletin of the International Dairy Federation 446/2010 2010.

  • [3] Wattiaux MA. Milk Composition and Nutritional Value Dairy Essentials Chapter 19 The Babcock Institute for International Dairy Research and Development 2011.

  • [4] Kolaczkowski ST Plucinski P Beltran FJ Rivas FJ McLurgh DB. Wet air oxidation: a review of process technologies and aspects in reactor design. Chem Eng J. 1999;73:143-160. DOI: 10.1016/S1385-8947(99)00022-4.

  • [5] Bhargava SK Tardio J Prasad J Föger K Akolekar DB Grocott ST. Wet oxidation and catalytic wet oxidation. Ind Eng Chem Res. 2006;45(4):1221-1258. DOI: 10.1021/ie051059n.

  • [6] Khan Y Anderson GK Elliott DJ. Wet oxidation of activated sludge. Water Res. 1999;33(7):1681-1687. DOI: 10.1016/S0043-1354(98)00387-X.

  • [7] Genc N Yonsel S Dagasan L Onar AN. Wet oxidation: a pre-treatment procedure for sludge. Waste Manage. 2002;22(6):611-6. DOI: 10.1016/S0956-053X(02)00040-5.

  • [8] Mucha J Zarzycki R. Analysis of wet oxidation process after initial thermohydrolysis of excess sewage sludge. Water Res. 2008;42:3025-3032. DOI: 10.1016/j.watres.2007.11.012.

  • [9] Imbierowicz M Chacuk A. The advanced kinetic model of the excess activated sludge wet oxidation. Polish J Chem Technol. 2006;8(2):16-19.

  • [10] Suárez-Ojeda ME Metcalfe IS Font J Carrera J. Calibration of a kinetic model for wet air oxidation (WAO) of substituted phenols: Influence of experimental data on model prediction and practical identifiability. Chem Eng J. 2009;150:328-336. DOI: 10.1016/j.cej.2009.01.006.

  • [11] García-Molina V Kallas J Esplugas S. Wet oxidation of 4-chlorophenol: Kinetic study. Chem Eng J. 2007;126(1):59-65. DOI: 10.1016/j.cej.

  • [12] Li L Chen P Gloyna EF. Generalized kinetic model for wet oxidation of organic compounds. AIChE J. 1991;37(11):1687-1697. DOI: 10.1002/aic.690371112.

  • [13] Chia YN Latusek MP Holles JH. Catalytic wet oxidation of lactose. Ind Eng Chem Res. 2008;47(12):4049-4055. DOI: 10.1021/ie701779u.

  • [14] Murzina EV Tokarev AV Korda´s K Karhu H Jyri-Pekka M Murzin DY. D-lactose oxidation over gold catalysts. Catal Today. 2008;131:385-392. DOI: 10.1016/j.cattod.2007.10.080.

  • [15] Patrick A Abraham M. Evaluation of a monolith-supported Pt/Al2O3 catalyst for wet oxidation of carbohydrate-containing waste streams. Environ Sci Technol. 2000;34:3480-3488. DOI: 10.1021/es000887z.

  • [16] Hendriks HEJ Kuster BFM Marin GB. The effect of bismuth on the selective oxidation of lactose on supported palladium catalysts. Carbohydr Res. 1990;204:121-129. DOI: 10.1016/0008-6215(90)84027-R.

  • [17] Piotrowska K Imbierowicz M Chacuk A. Wet oxidation of dairy sewage. Ecol Chem Eng S. 2012;19(1):29-38. DOI: 10.2478/v10216-011-0003-1.

  • [18] Marquardt D. An algorithm for least-squares estimation of nonlinear parameters. SIAM J Appl Math. 1963;11:431-441.

  • [19] Christiansen J. Numerical solution of ordinary differential equations of the 1st order using a method for automatic step change. Numer Math. 1970;14:317.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 1.467
5-year IMPACT FACTOR: 1.226

CiteScore 2018: 1.47

SCImago Journal Rank (SJR) 2018: 0.352
Source Normalized Impact per Paper (SNIP) 2018: 0.907

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 168 39 1
PDF Downloads 79 38 2