Removal of arsenic compounds with peat, peat-based and synthetic sorbents / Usuwania związków arsenu za pomocą torfu, sorbentów na bazie torfu i sorbentów syntetycznych

Open access

Abstract

Arsenic contamination of waters is a global problem; therefore, new approaches for its removal are needed. Peat, peat modified with iron compounds, iron humates and polymeric cation exchangers modified with iron were prepared and tested for sorption of arsenic compounds in comparison with weakly basic anionites. The highest sorption capacity was observed when peat sorbents modified with iron compounds were used. Sorption of different arsenic speciation forms onto iron-modified peat sorbents was investigated as a function of pH and temperature. It was established that sorption capacity increases with a rise in temperature, and the calculation of sorption process thermodynamic parameters indicates the spontaneity of sorption process and its endothermic nature.

Abstrakt

Skażenie wód arsenem jest problemem globalnym, dlatego potrzebne są nowe sposoby jego usuwania. Zbadano sorpcję związków arsenu przez torf, torf modyfikowany związkami żelaza, sole żelaza i kwasów humusowych oraz polimerowe kationity modyfikowane żelazem. Wyniki porównano z sorpcją związków arsenu przez anionity słabo zasadowe. Najwyższą wydajność sorpcji zaobserwowano dla torfowych sorbentów modyfikowanych związkami żelaza. Badano sorpcję różnych form specjacyjnych arsenu na sorbentach na bazie torfu modyfikowanych żelazem, w zależności od pH i temperatury. Stwierdzono wzrost pojemności sorpcyjnych tego materiału wraz ze wzrostem temperatury. Obliczone parametry termodynamiczne procesu sorpcji wskazują na samorzutność tego procesu i jego endotermiczność.

References
  • [1] Spedding PJ. Peat Fuel. 1988;67(7):883-900.

  • [2] Twardowska I, Kyziol J, Goldrath T, Avnimelech Y. Adsorption of zinc onto peat from peatlands of Poland and Israel. J Geochem Explor. 1999;66:387-405.

  • [3] Mohan D, Pittman AU. Arsenic removal from water/wastewater using adsorbents - A critical review. J Hazard Mater. 2007;142:1-53.

  • [4] Zhang F, Itoh H. Iron oxide-loaded slag for arsenic removal from aqueous system. Chemosphere. 2005;60:319-325.

  • [5] Nemade PD, Kadam AM, Shankar HS. Adsorption of arsenic from aqueous solution on naturally available red soil. J Environ Biol. 2009;30(4):499-504.

  • [6] Dupont L, Jolly G, Aplincourt M. Arsenic adsorption on lignocellulosic substrate loaded with ferric ion. Environ Chem Lett. 2007;5(3):125-129.

  • [7] Anirudhan TS, Unnithan MR. Arsenic(V) removal from aqueous solutions using an anion exchanger from coconut coir pith and its recovery. Chemosphere. 2007;66:60-66.

  • [8] Parga JR, Vazquez V, Moreno H. Thermodynamic studies of the arsenic adsorption on iron species generated by electrocoagulation. J Metallurgy. 2009; 9. DOI:10.1155/2009/286971.

  • [9] Maji SK, Pal A, Pal T, Adak A. Adsorption thermodynamics of arsenic on Laterite soil. J Surf Sci Technol. 2007;22(3-4):161-176.

  • [10] Gu Z, Fang J, Deng B. Preparation and evaluation of GAC-based iron-containing adsorbents for arsenic removal. Environ Sci Technol. 2005;39:3833-3843.

  • [11] DeMarco MJ, SenGupta AK, Greenleaf JE. Arsenic removal using polymeric/inorganic hybrid sorbent. Water Res. 2003;37:164-176.

  • [12] Šīre J. Composition and properties of humic acids in raised bog peat. [PhD Thesis]. Riga: University of Latvia; 2010.

  • [13] Coates J. Interpretation of infrared spectra, a practical approach. In: Meyers RA, editor. Encyclopedia of Analytical Chemistry. Chichester: John Wiley and Sons Ltd; 2000.

  • [14] Ho Y, Ofomaja AE. Kinetics and thermodynamics of lead ion sorption on palm kernel fibre from aqueous solution. Process Biochem. 2005;40:3455-3461.

  • [15] Vatutsina OM, Soldatov VS, Sokolova VI, Johann J, Bissen M, Weissenbacher A. A new hybrid (polymer/inorganic) fibrous sorbent for arsenic removal from drinking water. React Funct Polym. 2007;67:184-201.

  • [16] An B, Steinwinder TR, Zhao D. Selective removal of arsenate from drinking water using a polymeric ligand exchanger. Water Res. 2005;39:4993-5004.

  • [17] Buschmann J, Kappeler A, Lindauer U, Kistler D, Berg M, Sigg L. Arsenite and arsenate binding to humic acids: influence of pH, type of humic acid, and aluminium. Environ Sci Technol. 2006;40:6015-6020.

  • [18] Dambies L, Salinaro R, Alexandratos SD. Immobilized N-Methyl-d-glucamine as an arsenate-selective resin. Environ Sci Technol. 2004;38:6139-6146.

  • [19] Wilson MA, Tran NH, Milev AS, Kannangara GSK, Volk H, Lu MGC. Nanomaterials in soils. Geoderma. 2008;146:291-302.

  • [20] Partey F, Norman D, Ndur S, Nartey R. Arsenic sorption onto laterite iron concentrations: Temperature effect. J Colloid Interf. Sci. 2008;321:493-500.

  • [21] Ramesh A, Lee DJ, Wong JWC. Thermodynamic parameters for adsorption equilibrium of heavy metals and dyes from wastewater with low cost adsorbents. J Colloid Interf Sci. 2005;291:588-592.

Ecological Chemistry and Engineering S

The Journal of Society of Ecological Chemistry and Engineering

Journal Information


IMPACT FACTOR 2016: 0.717
5-year IMPACT FACTOR: 0.842

CiteScore 2016: 0.74

SCImago Journal Rank (SJR) 2016: 0.231
Source Normalized Impact per Paper (SNIP) 2016: 0.628

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 9 9 9
PDF Downloads 2 2 2