Control of Landfill Gases Emission with Particular Emphasis on Btex

Ewelina Staszewska 1  and Małgorzata Pawłowska 1
  • 1 Faculty of Environmental Engineering, Lublin University of Technology, ul. Nadbystrzycka 40B, 20-618 Lublin, Poland

Control of Landfill Gases Emission with Particular Emphasis on Btex

Landfilling is the most popular way for waste disposal and has been widely applied globally. A large quantity of volatile organic compounds (VOCs) is released from landfills. Among them, BTEX (benzene, toluene ethylbenzene and xylene) is a major group of pollutants, which have now become a cause for concern worldwide because of their toxic properties. For this reason, strict regulations have come into force which induce researchers to find methods to reduce their emissions. This article contains descriptions of several aerobic metabolic pathways for the degradation of BTEX, which are provided by two enzymatic systems (dioxygenases and monooxygenases). Special attention was paid to biofiltration - a method for improving the efficiency of treatment of BTEX released from landfills.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Lindzen RS. Global warming: The origin and nature of the alleged scientific consensus. Problems of Sustainable Development. 2010;5:13-28.

  • Sarkis J. Convincing industry that is value in environmentally supply chains. Problems of Sustainable Development. 2009;2:101-105.

  • Venkatesh G. Triple bottom line approach to individual and global sustainability. Problems of Sustainable Development. 2010;5:29-37.

  • Hueting R. Environmentally Sustainable National Income and Other Ways to Improve Information about Growth. Problems of Sustainable Development. 2011;6:31-46.

  • Hoedl E. Europe 2020 Strategy and European Recovery. Problems of Sustainable Development. 2011;6:11-18.

  • Udo V, Pawłowski A. Human Progress Towards Equitable Sustainable Development - part II: Empirical Exploration. Problems of Sustainable Development. 2011;6:33-62.

  • Dołęgowska S. Biofuels - a step towards sustainable development. Problems of Sustainable Development. 2009;4:117-121.

  • Golomb D. Emission reduction of greenhouse gases: emission quotas or mandated control technologies. Problems of Sustainable Development. 2008;3:23-25.

  • Lewicki R. Monitoring gazu wysypiskowego. Łódź: OBREM; 1991.

  • Pawłowska M. Możliwość zmniejszenia emisji metanu z wysypisk na drodze jego biochemicznego utleniania w rekultywacyjnym nadkładzie glebowym - badania modelowe. Lublin: Wydawnictwo Politechniki Lubelskiej; 1999.

  • Czerwiński J, Pawłowska M. Emissions of trace compounds from selected municipal landfills in Poland. In: Pawłowski L, Dudzińska M, Pawłowski A, editors. Environmental Engineering III. London: Taylor & Francis Group; 2010.

  • Le Mer J, Roger P. Production, oxidation, emission and consumption of methane by soils: A review. Eur J Soil Biol. 2011;37:25-50. DOI: 10.1016/S1164-5563(01)01067-6.

  • Reichenauer TG, Watzinger A, Riesing J, Gerzabek MH. Impact of different plants on the gas profile of a landfill cover. Waste Manage. 2011;31:843-853.

  • Glatzel S, Stahr K. The trace gas budget of differently managed grassland using the Hohenheim chamber. In: Proceedings of the 16th World Congress of Soil Science. Montpellier/France; 1998.

  • Semrau JD, Chistoserdov A, Lebron J, Costello A, Davagnino J, Kenna E, Holmes AJ, Finch R, Murrell JC, Lidstrom ME. Particulate methane monooxygenase genes in methanotrophs. J. Bacteriol. 1995;177:3071-3079.

  • Stępniewski W, Pawłowska M. Preliminary short-term test of methane oxidation capacity in porous materials - evaluation of reliability. In: Cygas D, Froehner KD, editors. Environmental Engineering. The 7th International Conference, vol. I Environmental Protection; Vilnus: 2008.

  • EPA 1997 Compilation of Air Pollutant Emissions Factors Volume 1: Stationary Point and Area Sources, Document No. AP-42, Fifth Edition with Supplements, Section 2.4 Municipal Solid Waste Landfills. Washington, DC: U. S. Environmental Protection Agency (US EPA).

  • EPA 1995 U. S. Environmental Protection Agency. Compilation of Air Pollutant Emissions Factors, AP-42, Fifth Addition, Volume 1: Stationary Point and Area Sources. January 1995.

  • Tchobanoglous G, Theisen H, Vigil S. Integrated Solid Waste Management, Engineering Principles and Management Issues. New York: McGraw-Hill; 1993.

  • Williams PT. Waste Treatment and Disposal. Chichester, UK: John Wiley&Sons, Ltd; 2005.

  • Chanton J, Liptay K. Seasonal variation in methane oxidation in a landfill cover soil as determined by an in situ stable isotope technique. Global Biogeochem Cycles. 2000;14:51-60. DOI: 10.1029/1999GB900087.

  • Gebert J, Gröngröft A, Miehlich G. Kinetics of microbial landfill methane oxidation in biofilters. Waste Manage. 2003;23:609-619. DOI: 10.1016/S0956-053X(03)00105-3.

  • Hilger H, Humer M. Biotic landfill cover treatments for mitigating methane emissions. Environ Monit Assess. 2003;84:71-84. DOI: 10.1023/A:1022878830252.

  • Huber-Humer M, Gebert J, Hilger H. Biotic systems to mitigate landfill methane emissions. Waste Manage Res. 2008;26:33-46. DOI: 10.1177/0734242X07087977.

  • Jugnia LB, Cabral AR, Greer CW. Biotic methane oxidation within an instrumented experimental landfill cover. Ecol. Eng. 2008;33:102-109. DOI: 10.1016/j.ecoleng.2008.02.003.

  • Perdikea K, Mehrotra AK, Hettiaratchi JPA. Study of thin biocovers (TBC) for oxidizing uncaptured methane emissions in bioreactor landfills. Waste Manage. 2008;28:1364-1374. DOI: 10.1016/j.wasman.2007.06.017.

  • Scheutz C. Attenuation of methane and trace organics in landfill soil covers [Ph.D Thesis]. Lyngby: Technical University of Denmark; 2002.

  • Stępniewski W, Pawłowska M. A Possibility to Reduce Methane Emission from Landfills by Its Oxidation in the Soil Cover. Chemistry from the Protection of the Environment 2. Environmental Science Research, Vol. 51. New York: Plenum Press; 1996.

  • Pawłowska M. Efficiency of microbial oxidation of methane in biofilter. In: Pawłowski L, Dudzińska MR, Pawłowski A, editors. Environmental Engineering, Boca Raton: CRC-Press Taylor&Francis Group; 2010.

  • Kwapisz E. Pathways of aerobic petroleum oil hydrocarbons biodegradation, Biotechnologia. 2006;2:166-188.

  • Greń I, Guzik U, Wojcieszyńska D, Łabużek S. Molecular basis for the degradation of aromatic xenobiotic compounds. Biotechnologia. 2008;2:58-67.

  • Schlegel HG. Mikrobiologia ogólna. Warszawa: Wyd. Nauk. PWN; 2003.

  • Smith MR. The biodegradation of aromatic hydrocarbons by bacteria. Biodegradation. 1990;1:191-206. DOI: 10.1007/BF00058836

  • Fritsche W, Hofrichter M. Aerobic Degradation by Microorganisms. In: Rehm HJ, Reed G, editors. Biotechnology Set, Second Edition. Weinheim, Germany: Wiley-VCH Verlag GmbH; 2008.

  • Cao B, Nagarajan K, Loh KC. Biodegradation of aromatic compounds: current status and opportunities for biomolecular approaches. Appl Microbiol Biotechnol. 2009;85:207-228. DOI: 10.1007/s00253-009-2192-4.

  • Yadav JS, Reddy CA. Degradation of benzene, toluene, ethylbenzene, and xylenes (BTEX) by the lignin-degrading basidiomycete Phanerochaete chrysosporium. Appl Environ Microbiol. 1993;59:756-762.

  • Chen CI, Taylor RT. Thermophilic biodegradation of BTEX by two Thermus species. Biotechnol Bioen. 1995;48:614-624. DOI: 10.1002/bit.260480609.

  • Deeb RA, Alvarez-Cohen L. Temperature effects and substrate interactions during the aerobic transformation of BTEX mixtures by toluene enriched consortia and Rhodococcus rhodochrous. Biotechnol Bioen. 1999;62:526-536. DOI: 10.1002/(SICI)1097-0290(19990305)62:5<526::AID-BIT4>3.0.CO;2-8.

  • Prenafeta-Boldu FX, Vervoort J, Grotenhuis JTC, van Groenestijn JW. Substrate interactions during the biodegradation of benzene, toluene, ethylbenzene, and xylene (BTEX) hydrocarbons by the fugus Cladophialophora sp. strain T1. Appl Environ Microbiol. 2002;68:2660-2665.

  • Alvarez PJ, Vogel TM. Substrate interactions of benzene, toluene, and paraxylene during microbial degradation by pure cultures and mixed culture aquifer slurries. Appl Environ Microbiol. 1991;57:2981-2985.

  • Chang MK, Voice TC, Criddle CS. Kinetics of competitive inhibition and cometabolism in the biodegradation of benzene, toluene, and p-xylene by two Pseudomonas isolates. Biotechnol Bioen. 1993;41:1057-1065. DOI: 10.1002/bit.260411108.

  • Oh YS, Sharafdeen Z, Baltizs BC, Bartha R. Interactions between benzene, toluene, and p-xylene (BTX) during their biodegradation. Biotechnol Bioeng. 1994;44:533-538. DOI: 10.1002/bit.260440417.

  • Chang BV, Wu WB, Yuan SY. Biodegradation of benzene, toluene, and other aromatic compounds by Pseudomonas sp. D8. Chemosphere. 1997;35:2807-2815. DOI: 10.1016/S0045-6535(97)00281-6.

  • Demir G. Degradation of toluene and benzene by Trametes versicolor. J Environ Biol. 2004;25:19-25.

  • Estevez E, Veiga MC, Kennes C. Biodegradation of toluene by the new fungal isolates Paecilomyces variotii and Exophiala oligosperma. J Ind Microbiol Biot. 2005;32:33-37. DOI: 10.1007/s10295-004-0203-0.

  • Guzik U, Wojcieszyńska D, Hupert-Kocurek K. Microbiological degradation of aromatic compounds in anoxic condition. Postępy Mikrobiologii. 2010;49:217-226.

  • Heider J, Fuchs G. Microbial anaerobic aromatic metabolizm. Anaerobe. 1997;3:1-22.

  • Coates JD. Chakraborty R. Lack JG, O'Connor SM, Cole KA, Bender KS, Achenbach LA. Anaerobic benzene oxidation coupled to nitrate reduction in pure culture by two sytains of Dechloromonas. Nature. 2001; 411: 1039-1043.

  • Rooney-Varga JN, Anderson RT, Fraga JL, Ringelberg D, Lovley DR. Microbial communities associated with anaerobic benzene degradation in petroleum-contaminated aquifer. Appl Environ Microbiol. 1999;65:3056-3063.

  • Chakraborty R, Coates JD. Anaerobic degradation of monoaromatic hydrocarbons. Appl Microbiol. Biotechnol. 2004;64:437-446. DOI: 10.1007/s00253-003-1526-x.

  • Lovley DR, Baedecker MJ, Lonergan DJ, Cozzarelli IM, Philips EJP, Siegel DI. Oxidation of aromatic contaminants coupled to microbial iron reduction. Nature. 1998;339:297-300.

  • Ball HA, Johnson HA, Reinhard M, Spormann AM. Initial reactions in anaerobic ethylbenzene oxidation by a denitrifying bacterium, strain EB1. J. Bacteriol. 1996;178:5755-5761.

  • Rabus R, Widdel F. Anaerobic degradation of ethylbenzene and other aromatic-hydrocarbons by new denitrifying bacteria. Arch Microbiol. 1995;163:96-103. DOI: 10.1007/BF00381782.

  • Harms G, Zengler K, Rabus R, Aeckersberg F, Minz D, Rossello-Mora R, Widdel F. Anaerobic oxidation of o-xylene, m-xylene, and homologous alkylbenzenes by new types of sulfate-reducing bacteria. Appl Environ Microbiol. 1999;65:999-1004.

  • Hess A, Zarda B, Hahn D, Häner A, Stax D, Höhener P, Zeyer J. In situ analysis of denitrifyin toluene- and m-xylene-degrading bacteria in a diesel fuel-contaminated laboratory aquifer column. Appl Environ Microbiol. 1997;63:2136-2141.

  • IPPC Fourth Assessment Report: Climate Change; 2007.

  • Jiang H, Chen Y, Jiang P, Zhang C, Smith J, Murrell JC, Xing XH. Methanotrophs: Multifunctional bacteria with promising application in environmental bioengineering. Biochem Eng J. 2010;49:277-288. DOI: 10.1016/j.bej.2010.01.003.

  • Borin S, Marzorati M, Brusetti L, Zilli M, Cherif H, Abdennaceur H, Converti A, Sorlini C, Daffonchio D. Microbial succession in a compost-packed biofilter treating benzene-contaminated air. Biodegradation. 2006; 17:79-89. DOI: 10.1007/s10532-005-7565-5.

  • Zdeb M, Pawłowska M. An influence of temperature on microbial removal of hydrogen sulphide from biogas. Roczn Ochr Środow, Koszalin; 2009:1235-1243.

  • Pawłowska M. Usuwanie metanu z gazu składowiskowego w biofiltrach metanotroficznych. Monografie Komitetu Inżynierii Środowiska PAN; Lublin; 2010.

  • Mallakin A, Ward OP. Degradation of BTEX compounds in liquid media and in peat biofilters. J Ind Microbiol. 1996;16:309-318. DOI: 10.1007/BF01570040.

  • Stępniewski W, Pawłowska M. Biofilters and biocovers of landfills - Effect of biophysical factors on their efficency. In: Alamgir M, Hossain QS, Rafizul IM, Mohiuddin KM, Bari QH. editors. Kbulna Proceedings of the National Seminar on Solid Waste Management - WasteSafe, Bangladesz; 2008.

  • Łebkowska M, Tabernacka A. Biologiczne metody usuwania zanieczyszczeń gazowych metodą biofiltracji. Biotechnologia. 2000;3:141-150.

  • Pawłowska M, Rożej A, Stępniewski W. Effect of bed properties on methane removal potential in aerated biofilter - model studies. Waste Manage. 2010;56:8-17. DOI: 10.1016/j.wasman.2010.10.005.

  • Namkoong W, Park JS, VanderGheynst JS. Biofiltration of gasoline vapor by compost media. Environ Pollut. 2003;121:181-187. DOI: 10.1016/S0269-7491(02)00223-3.

  • Seed LP, Corsi RL. Biofiltration of BTEX Contaminated Streams: Laboratory Studies. In: Proc. of 87th Annual Meeting and Exibition of the AWMA. A&WMA, Pittsburgh, PA; 1994.

  • Ergas SJ, Schroeder ED, Chang DPY, Morton RL. Control of volatile organic compound emissions using a compost biofilter. Water Environ Research. 1995;67:816-821. DOI: 10.2175/106143095X131736.

  • Tahraoui K, Rho D. Biodegradation of BTEX vapors in a compost medium biofilter. Compost Sci Utilization. 1998;6:13-21.

  • Wright WF, Schroeder ED, Chang DPY, Romstad K. Performance of a pilot-scale compost biofilter treating gasoline vapor. J Environ Eng. 1997:123,547-555. DOI:10.1061/(ASCE)0733-9372(1997)123:6(547).

  • Thompson D, Sterne L, Bell J, Parker W, Lye A. Pilot scale investigation of sustainable BTEX removal with a compost biofilter. In: Proc. of 89th Annual Meeting and Exhibition. A&WMA, Nashville; 1996.

  • Abumaizar RJ, Kocher W, Smith EH. Biofiltration of BTEX contaminated air streams using compost-activated carbon filter media. J Hazard Mater. 1998;60:111-126. DOI:10.1016/S0304-3894(97)00046-0.


Journal + Issues