Long-Term Statistical Assessment of the Water Quality of Tundja River

Open access

Long-Term Statistical Assessment of the Water Quality of Tundja River

Two major environmetric methods (Cluster analysis (CA) and Principal components analysis (PCA)) were applied for statistical assessment of the water quality of trans-border river Tundja. The study used long-term monitoring data from 26 sampling sites characterized by 12 physicochemical parameters. Clustering of chemical indicators results in 3 major clusters: the first one shows the impact of anthropogenic sources, the second - the impact of agriculture and farming activities and the last one describes the role of the physical parameters on the water quality and also the impact of urban wastes. For better assessment of the monitoring data, PCA was implemented, which identified four latent factors. Two of them - "urban wastes" factor and "agriculture" factor correspond almost entirely to clusters 3 and 2 from the previous statistical analysis. The third one, named "industrial wastes" factor, reveals a specific seasonal behavior of the river system. The last latent factor describes the active reaction of the water body and is determined as "acidity" factor. The linkage of the sampling sites along the river flow by CA formed two clusters with the spatial "upstream-downstream" separation. The apportionment model of the pollution determined the contribution of each one of identified pollution factors to the total concentration of each one of the water quality parameters.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Simeonova P Simeonov V Andreev G. Centr Europ J Chem. 2003;2:121-136.

  • Simeonov V Stefanov S Tsakovski S. Mikrochim Acta. 2000;134:15-21.

  • Simeonov V Sarbu C Massart D Tsakovski S. Mikrochim Acta. 2001;137:243-248.

  • Simeonov V Stratis J Samara C Zachariadis G Voutsa D Anthemidis A Sofoniou M Kouimtzis T. Water Res. 2003;37:4119-4124. DOI:10.1016/S0043-1354(03)00398-1.

  • Simeonov V Simeonova P Tsitouridou R. Ecol Chem Eng. 2004;11:450-469.

  • Mihailov G Simeonov V Nikolov N Mirinchev G. Water Sci Technol. 2005;51:37-43.

  • Simeonova P Lovchinov V Simeonov V. J Balk Ecol. 2007;10:197-204.

  • Astel A Tsakovski S Barbieri P Simeonov V. Water Res. 2007;41:4566-4578. DOI:10.1016/j.waters.2007.06.030.

  • Diadovski I Atanassova M Simeonov V. Ecol Chem Eng A. 2009;16:181-200.

  • Diadovski I Atanassova M Simeonov V. J Water Res Protect. 2010;2:455-461. DOI: 10.4236/jwarp.2010.25052.

  • Tsakovski S Astel A Simeonov V. J Chemomet. 2010;24:694-702. DOI: 10.1002/cem.1333.

  • Diadovski I Atanassova M Simeonov V. Ecol Chem Eng A. 2010;17:199-215.

  • Tsakovski S Simeonov V Stefanov S. Fresenius Envir Bull. 1999;8:28-36. DOI: 1018-4619/99/01-02/028-09.

  • Spanos Th Simeonov V Stratis J Xatzixristou X. Mikrochim Acta. 2003;141:35-40. DOI: 10.1007/s00604-002-0921-9.

  • Simeonov V Simeonova P Tsakovski S Lovchinov V. J Water Res Protect. 2010;2:354-362. DOI: 10.4236/jwarp.2010.24041.

  • Massart DL Kaufman L. The interpretation of analytical chemical data by the use of cluster analysis. Amsterdam: Elsevier;1983.

  • Einax J Zwanziger H Geiss S. Chemometrics in Environmental Analysis. Weinheim: VCH; 1998.

  • Thurston G Spengler J. Atmos Environ. 1985;19:9-26.

  • Simeonov V Einax JW Stanimirova I Kraft J. Anal Bioanal Chem. 2002;374:898-905. DOI: 10.1007/s00216-002-1559-5.

  • Simeonova P Lovchinov V Dimitrov D Radulov I. Ecol Chem Eng A. 2008;15:187-198.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 1.467
5-year IMPACT FACTOR: 1.226

CiteScore 2018: 1.47

SCImago Journal Rank (SJR) 2018: 0.352
Source Normalized Impact per Paper (SNIP) 2018: 0.907

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 161 65 0
PDF Downloads 59 37 0