# Tesla Coil Theoretical Model and its Experimental Verification

Janis Voitkans 1  and Arnis Voitkans 2
• 1 Researcher, Riga Technical University
• 2 Researcher, University of Latvia

## Abstract

In this paper a theoretical model of Tesla coil operation is proposed. Tesla coil is described as a long line with distributed parameters in a single-wire form, where the line voltage is measured across electrically neutral space. By applying the principle of equivalence of single-wire and two-wire schemes an equivalent two-wire scheme can be found for a single-wire scheme and the already known long line theory can be applied to the Tesla coil. A new method of multiple reflections is developed to characterize a signal in a long line. Formulas for calculation of voltage in Tesla coil by coordinate and calculation of resonance frequencies are proposed. The theoretical calculations are verified experimentally. Resonance frequencies of Tesla coil are measured and voltage standing wave characteristics are obtained for different output capacities in the single-wire mode. Wave resistance and phase coefficient of Tesla coil is obtained. Experimental measurements show good compliance with the proposed theory. The formulas obtained in this paper are also usable for a regular two-wire long line with distributed parameters.

If the inline PDF is not rendering correctly, you can download the PDF file here.

• [1] I. Dūmiņš, K. Tabaks, J. Briedis u. c. Elektrotehnikas teorētiskie pamati. Stacionāri procesi lineārās ķēdēs, I. Dūmiņa redakcija. Rīga: Zvaigzne ABC, 1999. 301 lpp.

• [2] M. Tilbury, The Ultimate Tesla Coil Design and Construction Guide, McGraw-Hill, 2008. [Online]. Available: http://issuu.com/theresistance/docs/-np--the-ultimate-tesla-coil-desig_20101219_062111

• [3] M. Denicolai, Tesla Transformer for Experimentation and Research. http://www.saunalahti.fi/dncmrc1/lthesis.pdf

• [4] J. Voitkāns, J. Greivulis, Elektriskās enerģijas pārvadīšanas iespējas pa vienvada līniju. II Pasaules latviešu zinātnieku kongress. Tēžu krājums, Rīga, 2001, 263 lpp.

• [5] J. Voitkāns, J. Greivulis, Vienvada elektropārvades līnijas eksperimentālās iekārtas tehniskie raksturojumi. Zinātniskā konference „Elektroenerģētika tehnoloģijas”. Tēžu krājums, Kauņa, 2003.

• [6] J. Voitkans, J. Greivulis and A. Locmelis, “Single wire transmission line of electrical energy”, EPE - PEMC scientific conference, Riga, 2004.

• [7] J. Voitkāns, J. Greivulis and A. Voitkāns, “Single Wire and Respective Double Wire Scheme Equivalence Principle.”7th International Scientific Conference „Engineering for Rural development”, Jelgava, 2008.

• [8] J. Voitkāns, S. Voitkāns, A. Voitkāns. LV patents Nr. 13785 “Elektriski vadoša ķermeņa paškapacitātes mērītājs”, “Patenti un preču zīmes”, 2008. Nr. 10.

• [9] I. Dūmiņš Elektrotehnikas teorētiskie pamati. Pārejas procesi, garās līnijas, nelineārās ķēdes., Zvaigzne ABC, Rīgā, 2006.

• [10] J. Voitkāns, A. Voitkāns and I. Osmanis, “Investigations on Electrical Fields and Current Flow through Electrode System within Electrode”. 8th International Scientific Conference „Engineering for Rural development”, Jelgava, 2009.

• [11] J. Voitkāns, J. Greivulis. LV patents Nr. 13432 “Sinusoidāla sprieguma pārvades vienvada līnija”. “Patenti un preču zīmes”, 2006. Nr. 6.

• [12] J. Voitkans, J. Greivulis. “Loading aspects of a single wire electric energy transmission line, “International scientific conference “Advanced Technologies for Energy Production and Effective Utilization”. Jelgava, 2004.

• [13] J. Voitkāns, J. Greivulis. LV patents Nr. 12932 “Vienvada regulējamā elektropārvades līnija”. “Patenti un preču zīmes”, 2002. Nr. 12.

• [14] J. Voitkāns, J. Greivulis. LV patents Nr. 13031 “Simetrizēta vienvada elektropārvades līnija”. “Patenti un preču zīmes”, 2003. Nr. 7.

• [15] B. B. Anderson, The Clasic Tesla Coil, 2000. [Online]. Available: http://www.tb3.com/tesla/tcoperation.pdf

• [16] G. L. Johnson, Solid State Tesla Coil. 2001. [Online]. Available: http://hotstreamer.deanostoybox.com/TeslaCoils/OtherPapers/GaryJohnson/tcchap1.pdf

• [17] G. F. Haller and E. T. Cunningham, The Tesla High Frequency Coil. New York, 1910.

OPEN ACCESS