Design Aspects and Test of an Inductive Fault Current Limiter

Open access

Abstract

Magnetic shielding inductive fault current limiters with high temperature superconducting tapes are considered as emerging devices that provide technology for the advent of modern power grids. The development of such limiters requires magnetic iron cores and leads to several design challenges regarding the constitutive parts of the limiter, namely the primary and secondary windings. Preliminary tests in a laboratory scale prototype have been carried out considering an assembly designed for simplicity in which the optimization of the magnetic coupling between the primary and secondary was not the main focus. This work addresses the design configuration of an inductive current limiter prototype regarding the assembly of the primary and secondary windings in the core. The prototype is based on a closed magnetic core wound by a primary, built from a normal electric conductor, and a short-circuited secondary, built from first generation superconducting tape. Four different design configurations are considered. Through experimental tests, the performance of such prototype is discussed and compared, in terms of normal and fault operation regimes. The results show that all the configurations assure effective magnetic shielding at normal operation regime, however, at fault operation regime, there are differences among configurations.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] S. S. Kalsi Applications of High Temperature Superconductors to Electric Power Equipment 1st ed. John Wiley & Sons Inc. 2011 p. 333.

  • [2] A. Hobl W. Goldacker B. Dutoit L. Martini A. Petermann and P. Tixador “Design and Production of the ECCOFLOW Resistive Fault Current Limiter” IEEE Transactions on Applied Superconductivity vol. 23 no. 3 pp. 5601804-5601804 Jun. 2013.

  • [3] J. M. Pina P. Pereira A. Pronto P. Arsénio and T. Silva “Modelling and Simulation of Inductive Fault Current Limiters” Physics Procedia vol. 36 pp. 1248-1253 2012.

  • [4] P. Tixador P “Development of superconducting power devices in Europe” Physica C: Superconductivity vol. 470 no. 20 pp. 971-979 Jun. 2010.

  • [5] H. Heydari A. A. Abrishami and M. Mordadi Bidgoli “Comprehensive Analysis for Magnetic Shield Superconducting Fault Current Limiters” IEEE Transactions on Applied Superconductivity vol. 23 no. 5 pp. 5604610-5604610 Oct. 2013.

  • [6] W.-S. Moon J.-N. Won J.-S. Huh and J.-C. Kim “A Study on the Application of a Superconducting Fault Current Limiter for Energy Storage Protection in a Power Distribution System” IEEE Transactions on Applied Superconductivity vol. 23 no. 3 pp. 5603404-5603404 Jun. 2013.

  • [7] A. Hobl W. Goldacker B. Dutoit L. Martini A. Petermann and P. Tixador “Design and Production of the ECCOFLOW Resistive Fault Current Limiter” IEEE Transactions on Applied Superconductivity vol. 23 no. 3 pp. 5601804-5601804 Jun. 2013.

  • [8] L. Martini M. Bocchi M. Ascade A. Valzasina V. Rossi C. Ravetta and G. Angeli “Live-Grid Installation and Field Testing of the First Italian Superconducting Fault Current Limiter” IEEE Transactions on Applied Superconductivity vol. 23 no. 3 pp. 5602504-5602504 Jun. 2013.

  • [9] R. Dommerque S. Krämer A. Hobl R. Böhm M. Bludau J. Bock D. Klaus H. Piereder A. Wilson T Krüger G Pfeiffer K Pfeiffer and S. Elschner “First commercial medium voltage superconducting faultcurrent limiters: production test and installation” Superconductor Science and Technology vol. 23 no. 3 pp. 034020 Feb. 2010.

  • [10] W. Paul M. Lakner J. Rhyner P. Unternährer T. Baumann M. Chen L. Widenhorn and A. Guérig “Test of 1.2 MVA high- superconducting fault current limiter” Supercond. Sci. Technol. vol. 10 no. 12 pp. 914-918 Dec. 1997.

  • [11] C. Y. Shigue T. T. da Cruz J. S. Lamas C. A. Baldan and E. R. Filho “Analysis of the E-J Curve of HTS Tapes Under DC and AC Magnetic Fields at 77 K” IEEE Transactions on Applied Superconductivity vol. 19 no 3 pp. 3332-3335 Jun. 2009.

  • [12] J. S. Lamas C. Baldan C. Y. Shigue A. Silhanek A. and V. Moshchalkov “Electrical and Magnetic Characterization of BSCCO and YBCO HTS Tapes for Fault Current Limiter Application” IEEE Transactions on Applied Superconductivity vol. 21 no. 3 pp. 3398-3402 Jun. 2011.

  • [13] J. C. Llambes D. Hazelton J. Duval M. Albertini S. Repnoy V Selvamanickam G. Majkic I. Kesign J. Langston M. Steurer F. Bogdan J. Hauer D. Crook S. Ranner T. Williams and M. Coleman “Performance of 2G HTS Tapes in Sub-Cooled LN2 for Superconducting Fault Current Limiting Applications” IEEE Transactions on Applied Superconductivity vol. 21 no.3 pp. 1206-1208 Jun. 2011.

  • [14] Y. Shiohara M. Yoshizumi Y. Takagi and T. Izumi “Future prospects of high Tc superconductors-coated conductors and their applications” Physica C: Superconductivity vol. 484 pp. 1-5 Mar. 2012.

  • [15] P. Arsénio T. Silva N. Vilhena J. M. Pina and A. Pronto “Analysis of Characteristic Hysteresis Loops of Magnetic Shielding Inductive Fault Current Limiters” IEEE Transactions on Applied Superconductivity vol. 23 no. 3 pp. 5601004-5601004 Jun. 2013.

  • [16] A. Usoskin F. Mumford R. Dietrich A. Handaze B. Prause A. Rutt and K. Schlenga “Inductive Fault Current Limiters: Kinetics of Quenching and Recovery” IEEE Transactions on Applied Superconductivity vol. 19 no. 3 pp. 1859-1862 Jun. 2009.

  • [17] J. M. Pina M. V. Neves and A. L. Rodrigues “High Temperature Superconducting Fault Current Limiters as Enabling Technology in Electrical Grids with Increased Distributed Generation Penetration” First IFIP WG 5.5/SOCOLNET Doctoral Conference on Computing Electrical and Industrial Systems vol. 314 pp. 427- 434 2010.

  • [18] C. Gandioli M. Alvarez-Herault P. Tixador N. Hadjsaid and D.-M. R. Medina “Innovative Distribution Networks Planning Integrating Superconducting Fault Current Limiters” IEEE Transactions on Applied Superconductivity vol. 23 no. 3 pp. 5603904-5603904 Jun. 2013.

  • [19] Y. Shiohara M. Yoshizumi Y. Takagi and T. Izumi “Future prospects of high Tc superconductors-coated conductors and their applications” Phys. C Supercond. vol. 484 pp. 1-5 Jan. 2013.

  • [20] Heydari H. Faghihi F. Sharifi R. and Poursoltanmohammadi A. H. “Superconducting technology for overcurrent limiting in a 25 kA current injection system” Superconductor Science and Technology vol. 21 no. 9 pp. 095016 Jul. 2008.

  • [21] A. Usoskin F. Mumford R. Dietrich A. Handaze B. Prause A. Rutt and K. Schlenga “Inductive Fault Current Limiters: Kinetics of Quenching and Recovery” IEEE Transactions on Applied Superconductivity vol. 19 no. 3 pp. 1859-1862 Jun. 2009.

  • [22] M. Noe and M. Steurer “High-temperature superconductor fault current limiters: concepts applications and development status” Superconductor Science and Technology vol. 20 no. 3 R15-R29 Jan. 2007.

  • [23] S. Kozak T. Janowski G. Wojtasiewicz J. Kozak B. Kondratowicz-Kucewicz and M. Majka “The 15 kV Class Inductive SFCL” IEEE Transactions on Applied Superconductivity vol. 20 no. 3 pp. 1203-1206 Jun. 2010.

  • [24] J. Kozak M. Majka S. Kozak and T. Janowski “Design and Tests of Coreless Inductive Superconducting Fault Current Limiter” IEEE Transactions on Applied Superconductivity vol. 22 no. 3 pp. 5601804-5601804 Jun. 2012.

  • [25] G. Wojtasiewicz T. Janowski S. Kozak J. Kozak M. Majka and B. Kondratowicz-Kucewicz “Experimental Investigation of a Model of a Transformer-Type Superconducting Fault Current Limiter With a Superconducting Coil Made of a 2G HTS Tape” IEEE Transactions on Applied Superconductivity vol. 24 no. 3 pp. 1-5 Jun. 2014.

  • [26] V. Meerovich V. Sokolovsky and I. Vajda “Calculation principles for a superconducting current-limiting transformer” Superconductor Science and Technology vol. 20 no. 10 pp. 1046-1053 2007.

  • [27] Y. Shirai K. Fujikawa T. Kitagawa M. Shiotsu H. Hatta S. Muroya and T. Nitta "Study on recovery time of a superconducting fault current limiter with adjustable trigger current level" IEEE Transactions on Applied Superconductivity vol. 11 no. 1 pp. 2086-2089 Mar. 2001.

  • [28] J. Kozak M. Majka S. Kozak and T. Janowski “Comparison of Inductive and Resistive SFCL” IEEE Transactions on Applied Superconductivity vol. 23 no. 3 pp. 5600604-5600604 Jun. 2013.

Search
Journal information
Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1624 1537 613
PDF Downloads 157 133 3