Raman Spectroscopy Principles for in vivo Diagnostic by Ellipsoidal Reflectors

Open access


The paper presents the analysis of the functional abilities of measurement tools with ellipsoidal reflectors for Raman spectroscopy. The investigated structural scheme of the setup is intended for use in Raman spectroscopy in vivo by ellipsoidal reflectors. The setup can be used as a prototype for development of a device for non-invasive control of sugar level. Additionally, the investigation demonstrates the efficiency of ellipsoidal photometry method for registration of Raman scattering signal on test-solutions. The testing was performed for different sugar concentrations with the laser radiation wavelength 980 nm. In addition, the selecting principles of laser radiation source parameters (including beam diameter and power) were investigated. During the research, the data about spatial distribution of the backscattered light in human shoulder and finger tissues during photometry by ellipsoidal reflectors were received. The procedure involves application of Monte Carlo simulation. The dependency of the external and middle ring illuminance of photometric images on the diameter and power of the laser beam is represented based on the zone analysis.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] A. M.-Jansen Ch. A. Patil and I. J. Pence “Raman spectroscopy: from benchtop to bedside” in Biomedical Photonics Handbook vol. II: Biomedical Diagnostics T. Vo-Dinh Duke University Durham North Carolina USA: CRC Press Taylor & Francis Group 2015 pp. 759–803.

  • [2] D. Naumann “FT-infared and FT-Raman spectroscopy in biomedical research” Applied spectroscopy reviews vol. 36 no. 2&3 pp. 239–298 2001. https://doi.org/10.1081/ASR-100106157

  • [3] D. Cialla A. März R. Böhme F. Theil K. Weber M. Schmitt and J. Popp “Surface-enhanced Raman spectroscopy (SERS): Progress and trends” Analytical and Bioanalytical Chemistry vol. 403 no. 1 pp. 27–54 2012. https://doi.org/10.1007/s00216-011-5631-x

  • [4] K. T. Schomacker J. K. Frisoli C. C. Compton Th. J. Flotte J. M. Richter N. S. Nishioka and Th. F. Deutsch “Ultraviolet laser-induced fluorescence of colonic tissue: basic biology and diagnostic potential” Lasers in surgery and medicine vol 12 no. 1 pp. 63–78 1992. https://doi.org/10.1002/lsm.1900120111

  • [5] O. Masihzadeh D. A. Ammar M. Y. Kahook and T. C. Lei “Coherent Anti-Stokes Raman scattering (CARS) microscopy: A novel technique for imaging the retina” Investigative Ophthalmology & Visual Science 2013 vol. 54 no. 5 pp. 3094–3101. https://doi.org/10.1167/iovs.13-11642

  • [6] Ch.-Ch. Lin M.-T. Kuo and H.-Ch. Chang “Review: Raman spectroscopy – A novel tool for noninvasive analysis of ocular surface fluid” Journal of Medical and Biological Engineering vol. 30 no. 6 pp. 343–354 2010.

  • [7] A. Mahadevan-Jansen M. G. Sowa G. J. Puppels Z. Gryczynski T. Vo-Dinh and J. R. Lakowicz “Diagnosis of atherosclerosis in human carotid artery by FT-Raman spectroscopy: Principal Components Analysis algorithm” Proceedings of SPIE The International Society for Optical Engineering 2004 vol. 5321 pp. 205–211.

  • [8] P. Chen A. Shen X. Zhou and J. Hu “Bio-Raman spectroscopy: a potential clinical analytical method assisting in disease diagnosis” Anal. Methods no. 3 pp. 1257–1269 2011. https://doi.org/10.1039/c1ay05039g

  • [9] K. Kong C. A. Kendall N. Stone and I. Notingher “Raman spectroscopy for medical diagnostics — From in-vitro biofluid assays to in-vivo cancer detection” Advanced Drug Delivery Reviews vol. 89 pp. 121–134 2015. https://doi.org/10.1016/j.addr.2015.03.009

  • [10] S. Jeong et al. “Fluorescence-Raman dual modal endoscopic system for multiplexed molecular diagnostics” Scientific Reports 2015 vol. 5 article 9455 pp. 1–9. https://doi.org/10.1038/srep09455

  • [11] A. M. K. Enejder T.-W. Koo J. Oh M. Hunter S. Sasic and M. S. Feld “Blood analysis by Raman spectroscopy” Optics Letters 2002 vol. 27 no. 22 pp. 204–206. https://doi.org/10.1364/OL.27.002004

  • [12] Sh. N. M. M. Nezhad Z. Hozhabri A. Haghparast G. Karami and P. Hejazi “Optimization of parameters in 16-slice CT-scan protocols for Reduction of the Absorbed Dose” Iran J Med Phys 2014 vol. 11 no. 2 & 3 pp. 270–275.

  • [13] M. S. Wróbel “Non-invasive blood glucose monitoring with Raman spectroscopy: prospects for device miniaturization” IOP Conference Series: Materials Science and Engineering 012036 2016 vol. 104. https://doi.org/10.1088/1757-899X/104/1/012036

  • [14] R. Pandey S. K. Paidi T. A.Valdez et al. “Noninvasive Monitoring of Blood Glucose with Raman spectroscopy” Acc. Chem. Res. 2017 vol. 50 no. 2 pp. 264–272. https://doi.org/10.1021/acs.accounts.6b00472

  • [15] M. Bezuglyi N. Bezuglaya and A. Viruchenko “On the possibility of ellipsoidal photometry and Monte Carlo simulation to spatial analysis of biological media” Electronics and Nanotechnology 2017 IEEE 37th International Conference on Electronics and Nanotechnology (ELNANO) pp. 321–324 2017. https://doi.org/10.1109/ELNANO.2017.7939771

  • [16] M. A. Bezuglyi N. V. Bezuglaya and I. V. Helich “Ray tracing in ellipsoidal reflectors for optical biometry of media” Appl. Opt. 2017 vol. 56 no. 30 pp. 8520–8526. https://doi.org/10.1364/AO.56.008520

  • [17] M. Bezuglyi N. Bezuglaya O. Kuprii and I. Yakovenko “The noninvasive optical glucometer prototype with ellipsoidal reflectors” 2018 IEEE 59th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON) 2018 pp. 1–4. https://doi.org/10.1109/RTUCON.2018.8659864

  • [18] M. Bezuglyi N. Bezuglaya and S. Kostuk “Influence of laser beam profile on light scattering by human skin during photometry by ellipsoidal reflectors” Devices and Methods of Measurements 2018 vol. 9 no. 1 pp. 56–65. https://doi.org/10.21122/2220-9506-2018-9-1-56-65

  • [19] P. Bhandare Y. Mendelson R. A. Peura et al. “Multivariate determination of glucose in whole blood using partial least-squares and artificial neural networks based on mid-infrared spectroscopy” Appl. Spectroscopy 1993 vol. 47 no. 8 pp. 1214–1221. https://doi.org/10.1366/0003702934067928

  • [20] I. V. Meglinski A. N. Bashkatov E. A. Genina D. Yu. Churmacov and V. V. Tuchin “Study of the possibility of increasing the probing depth by the method of reflection confocal microscopy upon immersion clearing of near-surface human skin layers” Quantum Electronics 2002 vol. 32 no. 10 pp. 875–882. https://doi.org/10.1070/QE2002v032n10ABEH002309

Journal information
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 94 94 26
PDF Downloads 83 83 31