Improving Legibility of Motor Current Spectrum for Broken Rotor Bars Fault Diagnostics

Open access

Abstract

In this paper, the harmonic contribution of the broken rotor bar of an induction machine is investigated using an effective combination of the fast Fourier transform (FFT) and a band stop filter. The winding, spatial, grid fed and fault-based harmonics are investigated. Since the fundamental component is the most powerful component as compared to the other frequencies, it decreases the legibility of spectrum, making logarithmic scale inevitable. It also remains a potential threat of burying the fault representative side band frequencies because of its spectral leakage. In this paper, a band stop Chebyshev filter is used to attenuate the fundamental component, which makes the spectrum clearer and easier to understand even on the linear scale. Its good transition band and low passband ripples make it suitable for attenuating the main supply frequency with low impact on the neighbouring side band frequencies. To study the impact of fault on magnetic flux distribution, simulation is done using finite element method with good number of mesh elements and very small step size. The line current is calculated and frequency spectrum is investigated to segregate the spatial and fault frequencies using the proposed technique. The results are further validated by implementing the algorithm on the data measured in the laboratory environment including the grid fed harmonics.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] J. Pyrhönen T. Jokinen and V. Hrabovcová Design of rotating electrical machines. John Wiley & Sons Inc. Witshire 2008.

  • [2] H. W. Penrose “Test Methods for Determining the Impact of Motor Condition on Motor Efficiency and Reliability” PhD Diss. vol. ALL-TEST P no. LLC Old Saybrook CT pp. 1–8.

  • [3] G. R. Bossio C. H. De Angelo J. M. Bossio C. M. Pezzani and G. O. Garcia “Separating Broken Rotor Bars and Load Oscillations on IM Fault Diagnosis Through the Instantaneous Active and Reactive Currents” IEEE Trans. Ind. Electron. vol. 56 no. 11 pp. 4571–4580 Nov. 2009. https://doi.org/10.1109/TIE.2009.2024656

  • [4] A. Soualhi G. Clerc and H. Razik “Detection and Diagnosis of Faults in Induction Motor Using an Improved Artificial Ant Clustering Technique” IEEE Trans. Ind. Electron. vol. 60 no. 9 pp. 4053–4062 Sep. 2013. https://doi.org/10.1109/TIE.2012.2230598

  • [5] B. Ayhan H. J. Trussell Mo-Yuen Chow and Myung-Hyun Song “On the Use of a Lower Sampling Rate for Broken Rotor Bar Detection With DTFT and AR-Based Spectrum Methods” IEEE Trans. Ind. Electron. vol. 55 no. 3 pp. 1421–1434 Mar. 2008. https://doi.org/10.1109/TIE.2007.896522

  • [6] A. Khezzar M. Y. Kaikaa M. El Kamel Oumaamar M. Boucherma and H. Razik “On the Use of Slot Harmonics as a Potential Indicator of Rotor Bar Breakage in the Induction Machine” IEEE Trans. Ind. Electron. vol. 56 no. 11 pp. 4592–4605 Nov. 2009. https://doi.org/10.1109/TIE.2009.2030819

  • [7] M. Malekpour B. T. Phung and E. Ambikairajah “Stator current envelope extraction for analysis of broken rotor bar in induction motors” in 2017 IEEE 11th International Symposium on Diagnostics for Electrical Machines Power Electronics and Drives (SDEMPED) 2017 pp. 240–246. https://doi.org/10.1109/DEMPED.2017.8062362

  • [8] A. Belahcen J. Martinez and T. Vaimann “Comprehensive computations of the response of faulty cage induction machines” in 2014 International Conference on Electrical Machines (ICEM) 2014 pp. 1510–1515. https://doi.org/10.1109/ICELMACH.2014.6960382

  • [9] S. Nandi H. A. Toliyat and X. Li “Condition Monitoring and Fault Diagnosis of Electrical Motors—A Review” IEEE Trans. Energy Convers. vol. 20 no. 4 pp. 719–729 Dec. 2005. https://doi.org/10.1109/TEC.2005.847955

  • [10] B. Asad T. Vaimann A. Kallaste and A. Belahcen “Harmonic Spectrum Analysis of Induction Motor With Broken Rotor Bar Fault” in 2018 IEEE 59th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON) 2018 pp. 1–7. https://doi.org/10.1109/RTUCON.2018.8659842

  • [11] R. Puche-Panadero M. Pineda-Sanchez M. Riera-Guasp J. Roger-Folch E. Hurtado-Perez and J. Perez-Cruz “Improved Resolution of the MCSA Method Via Hilbert Transform Enabling the Diagnosis of Rotor Asymmetries at Very Low Slip” IEEE Trans. Energy Convers. vol. 24 no. 1 pp. 52–59 Mar. 2009. https://doi.org/10.1109/TEC.2008.2003207

  • [12] M. Pineda-Sanchez M. Riera-Guasp J. A. Antonino-Daviu J. Roger-Folch J. Perez-Cruz and R. Puche-Panadero “Diagnosis of Induction Motor Faults in the Fractional Fourier Domain” IEEE Trans. Instrum. Meas. vol. 59 no. 8 pp. 2065–2075 Aug. 2010. https://doi.org/10.1109/TIM.2009.2031835

  • [13] M. A. Moussa M. Boucherma and A. Khezzar “A Detection Method for Induction Motor Bar Fault Using Sidelobes Leakage Phenomenon of the Sliding Discrete Fourier Transform” IEEE Trans. Power Electron. vol. 32 no. 7 pp. 5560–5572 Jul. 2017. https://doi.org/10.1109/TPEL.2016.2605821

  • [14] S. H. Kia H. Henao and G.-A. Capolino “Diagnosis of Broken-Bar Fault in Induction Machines Using Discrete Wavelet Transform Without Slip Estimation” IEEE Trans. Ind. Appl. vol. 45 no. 4 pp. 1395–1404 Jul. 2009. https://doi.org/10.1109/TIA.2009.2018975

  • [15] S. Singh and N. Kumar “Detection of Bearing Faults in Mechanical Systems Using Stator Current Monitoring” IEEE Trans. Ind. Informatics vol. 13 no. 3 pp. 1341–1349 Jun. 2017. https://doi.org/10.1109/TII.2016.2641470

  • [16] M. Kang and J.-M. Kim “Reliable Fault Diagnosis of Multiple Induction Motor Defects Using a 2-D Representation of Shannon Wavelets” IEEE Trans. Magn. vol. 50 no. 10 pp. 1–13 Oct. 2014. https://doi.org/10.1109/TMAG.2014.2316474

  • [17] J. R. Cameron W. T. Thomson and A. B. Dow “Vibration and current monitoring for detecting airgap eccentricity in large induction motors” IEE Proc. B Electr. Power Appl. vol. 133 no. 3 p. 155 1986. https://doi.org/10.1049/ip-b.1986.0022

  • [18] R. R. Schoen and T. G. Habetler “Effects of time-varying loads on rotor fault detection in induction machines” IEEE Trans. Ind. Appl. vol. 31 no. 4 pp. 900–906 1995. https://doi.org/10.1109/28.395302

  • [19] H. Henao C. Demian and G.-A. Capolino “A frequency-domain detection of stator winding faults in induction machines using an external flux sensor” IEEE Trans. Ind. Appl. vol. 39 no. 5 pp. 1272–1279 Sep. 2003. https://doi.org/10.1109/TIA.2003.816531

  • [20] A. Sapena-Bano J. Burriel-Valencia M. Pineda-Sanchez R. Puche-Panadero and M. Riera-Guasp “The Harmonic Order Tracking Analysis Method for the Fault Diagnosis in Induction Motors Under Time-Varying Conditions” IEEE Trans. Energy Convers. vol. 32 no. 1 pp. 244–256 Mar. 2017. https://doi.org/10.1109/TEC.2016.2626008

  • [21] J. Milimonfared H. M. Kelk S. Nandi A. D. Minassians and H. A. Toliyat “A novel approach for broken-rotor-bar detection in cage induction motors” IEEE Trans. Ind. Appl. vol. 35 no. 5 pp. 1000–1006 1999. https://doi.org/10.1109/28.793359

  • [22] N. M. Elkasabgy A. R. Eastham and G. E. Dawson “Detection of broken bars in the cage rotor on an induction machine” IEEE Trans. Ind. Appl. vol. 28 no. 1 pp. 165–171 1992. https://doi.org/10.1109/28.120226

Search
Journal information
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 87 87 38
PDF Downloads 86 86 39