Alternative Energetics DC Microgrid With Hydrogen Energy Storage System

Open access

Abstract

This paper is related to an alternative energetics microgrid with a wind generator and a hydrogen energy storage system. The main aim of this research is the development of solutions for effective use of the wind generators in alternative energetics devices, at the same time providing uninterrupted power supply of the critical loads. In this research, it was accepted that the alternative energetics microgrid operates in an autonomous mode and the connection to the conventional power grid is not used. In the case when wind speed is low, the necessary power is provided by the energy storage system, which includes a fuel cell and a tank with stored hydrogen. The theoretical analysis of the storage system operation is made. The possible usage time of the stored hydrogen depends on the available amount of hydrogen and the consumption of the hydrogen by the fuel cell. The consumption, in turn, depends on used fuel cell power. The experimental results suggest that if the wind generator can provide only a part of the needed power, the abiding power can be provided by the fuel cell. In this case, a load filter is necessary to decrease the fuel cell current pulsations.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Latvijas Republikas Vides aizsardzības un reģionālās attīstības Ministrija “Atjaunojamo energoresursu izmantošanas pamatnostādnes 2006.–2013. gadam (informativa dala)” Rīga 2006.

  • [2] A. Adamovičs V. Dubrovskis I. Plūme Ā. Jansons D. Lazdiņa and A. Lazdiņš Biomasas izmantošanas ilgstspējības kritēriju pielietošana un pasākumu izstrāde Rīga 2009.

  • [3] K. Bunker S. Doig K. Hawley and J. Morris “Renewable Microgrids: Profiles From Islands and Remote Communities Across the Globe” 2015.

  • [4] The Microgrids Group at Berkeley Lab “About Microgrids.” [Online]. Available: https://building-microgrid.lbl.gov/about-microgrids-0.

  • [5] H. S. Kumar “Smart microgrid.” 2015.

  • [6] The Microgrids Group at Berkeley Lab “Microgrid Definitions.” [Online]. Available: https://building-microgrid.lbl.gov/about-microgrids-0.

  • [7] T. Roughan “Workshop on Microgrid Technologies and Applications” RPI Cent. Futur. Energy Syst. Overv. p. 11 2013.

  • [8] R. W. De Doncker “Future DC Grid Technology for more Decentralized Power Production and Renewable Power Supplies” IEEE PEDG2012 2012.

  • [9] A. Graillot “Hybrid Micro Grids for rural electrification: Developing Appropriate Technology” presented at AIE Event Maputo 2009.

  • [10] A. Suzdalenko “Research and Development of Control Means for Intelligent Household Electrical Grids” Ph.D. Thesis Riga Technical University 2013.

  • [11] “MED-Solar Training Course. Module 2. Microgrid Elements” Universitat Politecnica de Catalunya p. 59.

  • [12] R. Villafáfila Robles “Microgrids and emulation of distribution energy resources” p. 13.

  • [13] P. Karlsson “DC Distributed Power Systems” Ph.D. Thesis Lund University 2002.

  • [14] D. Deaconu A. Chirila M. Albu and L. Toma “Studies on a LV DC network” in 2007 European Conference on Power Electronics and Applications 2007 pp. 1–7. https://doi.org/10.1109/EPE.2007.4417634

  • [15] A. Sannino G. Postiglione and M. H. J. Bollen “Feasibility of a DC network for commercial facilities” IEEE Trans. Ind. Appl. vol. 39 no. 5 pp. 1499–1507 2003. https://doi.org/10.1109/TIA.2003.816517

  • [16] D. J. Hammerstrom “AC versus DC distribution systems-did we get it right?” in 2007 IEEE Power Eng. Soc. Gen. Meet. PES Tampa FL pp. 1–5 2007. https://doi.org/10.1109/PES.2007.386130

  • [17] A. Kwasinski “Micro-grids architectures stability and protections” 2012.

  • [18] S. Rolland and G. Glania “Hybrid Mini-Grids for Rural Electrification: Lessons Learned” CA: Renewable Energy House Brussels 2011 72 p.

  • [19] A. Senfelds M. Vorobjovs D. Meike and O. Bormanis “Power Smoothing Approach within Industrial DC Microgrid with Supercapacitor Storage for Robotic Manufacturing Application” in 2015 IEEE Int. Conf. on Automation Science and Eng. (CASE) Gothenburg 2015 vol. 1020 pp. 1333–1338. https://doi.org/10.1109/CoASE.2015.7294283

  • [20] National Renewable Energy Laboratory “Power Purchase Agreement Checklist for State and Local Governments” Golden Colorado 2009.

  • [21] M. A. Maehlum “What’s the Difference Between Net Metering and Feed-In Tariffs?” Energy Informative 2014. [Online]. Available: http://energyinformative.org/net-metering-feed-in-tariffs-difference

  • [22] G. Zaleskis and I. Rankis “Problem of an Estimation of the Wind Generators Economic Efficiency in Latvia” in Proceedings of the 20th International Conference ELECTRONICS 2016 Palanga Lithuania 2016 pp. 16–21.

  • [23] E. H. Camm M. R. Behnke O. Bolado et al. “Characteristics of Wind Turbine Generators for Wind Power Plants” in 2009 IEEE Power & Energy Society General Meeting Calgary AB 2009 pp. 1–5. https://doi.org/10.1109/pes.2009.5275330

  • [24] P. Suskis “DC/DC Voltage H-Bridge Converter with Fuzzy Logic Control for Autonomous Power Supply” in 54th Int. Scientific Conf. of Riga Technical University Riga Latvia 2013.

  • [25] P. Suskis A. Andreiciks I. Steiks O. Krievs and J. Kleperis “Microgrid for one side wind-and-hydrogen powered generation” Latvian Journal of Physics and Technical Sciences no. 1 pp. 12–20 2014.

  • [26] I. Galkins and O. Tetervenoks “Efficiency considerations for non-inverting buck-boost converter operating with direct current control” in 2014 16th European Conf. on Power Electronics and Applicat. Lappeenranta 2014 pp. 1–8. https://doi.org/10.1109/EPE.2014.6911032

  • [27] O. Tetervenoks and I. Galkins “Considerations on practical implementation of control system for switch mode current regulator” in 2014 14th Biennial Baltic Electronic Conference (BEC) Tallinn 2014 pp. 225–228. https://doi.org/10.1109/bec.2014.7320597

  • [28] D. Connolly “A Review of Energy Storage Technologies for the Integration of Fluctuating Renewable Energy” University of Limerick 2009 46 p.

  • [29] I. Steiks “Ūdeņraža enerģētiskās iekārtas spēka elektronikas pārveidotāju izstrāde.” Promocijas darbs Rīgas Tehniskā universitāte Rīga 2011 146 p.

  • [30] G. Zaleskis I. Steiks A. Pumpurs and O. Krievs “DC-AC Converter for Load Supply in Autonomous Wind-Hydrogen Power System” in 56th Int. Scientific Conf. on Power and Electrical Engineering of Riga Technical University (RTUCON) Riga Latvia 2015 pp. 169–173. https://doi.org/10.1109/RTUCON.2015.7343118

  • [31] HyPM® Fuel Cell Power Modules Hydrogenics advanced hydrogen solutions. [Online]. Available: www.hydrogenics.com.

  • [32] Hy PM XR8 Installation Operation and Maintenance Manual Revision 2 DOC. P/N:1035409-02 Hydrogenics Aug. 2010.

Search
Journal information
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 301 156 4
PDF Downloads 125 69 4