Physiological role of Prion Protein in Copper homeostasis and angiogenic mechanisms of endothelial cells

Open access

Abstract

The Prion Protein (PrP) is mostly known for its role in prion diseases, where its misfolding and aggregation can cause fatal neurodegenerative conditions such as the bovine spongiform encephalopathy and human Creutzfeldt–Jakob disease. Physiologically, PrP is involved in several processes including adhesion, proliferation, differentiation and angiogenesis, but the molecular mechanisms behind its role remain unclear. PrP, due to its well-described structure, is known to be able to regulate copper homeostasis; however, copper dyshomeostasis can lead to developmental defects. We investigated PrP-dependent regulation of copper homeostasis in human endothelial cells (HUVEC) using an RNA-interference protocol. PrP knockdown did not influence cell viability in silenced HUVEC (PrPKD) compared to control cells, but significantly increased PrPKD HUVEC cells sensitivity to cytotoxic copper concentrations. A reduction of PrPKD cells reductase activity and copper ions transport capacity was observed. Furthermore, PrPKD-derived spheroids exhibited altered morphogenesis and their derived cells showed a decreased vitality 24 and 48 hours after seeding. PrPKD spheroid-derived cells also showed disrupted tubulogenesis in terms of decreased coverage area, tubule length and total nodes number on matrigel, preserving unaltered VEGF receptors expression levels. Our results highlight PrP physiological role in cellular copper homeostasis and in the angiogenesis of endothelial cells.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Wulf M-A Senatore A Aguzzi A. The biological function of the cellular prion protein: an update. BMC Biol [Internet]. BioMed Central; 2017 [cited 2019 Feb 13];15(1):34. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28464931

  • 2. Panegyres P Burchell JT. Prion diseases: immunotargets and therapy. ImmunoTargets Ther [Internet]. 2016 Jun [cited 2019 Apr 8];5:57. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27529062

  • 3. Walter E Spevacek A Visconte M Rossi A Millhauser G Stevens D. Copper Binding Extrinsic to the Octarepeat Region in the Prion Protein. Curr Protein Pept Sci [Internet]. 2009 Oct [cited 2019 Feb 18];10(5):529–35. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19538144

  • 4. Schmitt-Ulms G Ehsani S Watts JC Westaway D Wille H. Evolutionary descent of prion genes from the ZIP family of metal Ion transporters. Poon AFY editor. PLoS One [Internet]. 2009 Sep 28 [cited 2019 Feb 18];4(9):e7208. Available from: https://dx.plos.org/10.1371/journal.pone.0007208

  • 5. Naslavsky N Stein R Yanai A Friedlander G Taraboulos A. Characterization of detergent-insoluble complexes containing the cellular prion protein and its scrapie isoform. J Biol Chem [Internet]. 1997 Mar 7 [cited 2019 Mar 11];272(10):6324–31. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9045652

  • 6. Zahn R Liu A Lührs T Riek R von Schroetter C López García F et al. NMR solution structure of the human prion protein. Proc Natl Acad Sci U S A [Internet]. 2000 Jan 4 [cited 2019 Mar 11];97(1):145–50. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10618385

  • 7. Lawson VA Collins SJ Masters CL Hill AF. Prion protein glycosylation [Internet]. Vol. 93 Journal of Neurochemistry. 2005 [cited 2019 Mar 11]. p. 793–801. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15857383

  • 8. Sarnataro D Pepe A Altamura G De Simone I Pesapane A Nitsch L et al. The 37/67 kDa laminin receptor (LR) inhibitor NSC47924 affects 37/67 kDa LR cell surface localization and interaction with the cellular prion protein. Sci Rep [Internet]. 2016 Apr 13 [cited 2019 Mar 22];6(1):24457. Available from: http://www.nature.com/articles/srep24457

  • 9. Haigh CL Edwards K Brown DR. Copper binding is the governing determinant of prion protein turnover. Mol Cell Neurosci [Internet]. 2005 Oct [cited 2019 Mar 22];30(2):186–96. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1044743105001478

  • 10. Taylor DR. Assigning functions to distinct regions of the N-terminus of the prion protein that are involved in its copper-stimulated clathrin-dependent endocytosis. J Cell Sci [Internet]. 2005 Nov 1 [cited 2019 Mar 11];118(21):5141–53. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16254249

  • 11. Ren K Wang S-B Chen C Dong X-P Sun H Gao C et al. PrP octarepeats region determined the interaction with caveolin-1 and phosphorylation of caveolin-1 and Fyn. Med Microbiol Immunol [Internet]. 2013 Jun 3 [cited 2019 Mar 11];202(3):215–27. Available from: http://link.springer.com/10.1007/s00430-012-0284-8

  • 12. Cheng F Lindqvist J Haigh CL Brown DR Mani K. Copper-dependent co-internalization of the prion protein and glypican-1. J Neurochem [Internet]. 2006 Sep [cited 2019 Mar 11];98(5):1445–57. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16923158

  • 13. Castle AR Gill AC. Physiological Functions of the Cellular Prion Protein. Front Mol Biosci [Internet]. 2017;4(April):1–25. Available from: http://journal.frontiersin.org/article/10.3389/fmolb.2017.00019/full

  • 14. D’Ambrosi N Rossi L. Copper at synapse: Release binding and modulation of neurotransmission. Neurochem Int [Internet]. 2015 Nov [cited 2019 Feb 14];90:36–45. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26187063

  • 15. Urso E Manno D Serra A Buccolieri A Rizzello A Danieli A et al. Role of the cellular prion protein in the neuron adaptation strategy to copper deficiency. Cell Mol Neurobiol [Internet]. 2012 Aug 24 [cited 2019 Mar 11];32(6):989–1001. Available from: http://link.springer.com/10.1007/s10571-012-9815-5

  • 16. Hornshaw MP McDermott JR Candy JM Lakey JH. Copper binding to the N-terminal tandem repeat region of mammalian and avian prion protein: structural studies using synthetic peptides. Biochem Biophys Res Commun [Internet]. 1995 Sep 25 [cited 2019 Mar 22];214(3):993–9. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0006291X85723844

  • 17. Hornshaw MP McDermott JR Candy JM. Copper binding to the N-terminal tandem repeat regions of mammalian and avian prion protein. Biochem Biophys Res Commun [Internet]. 1995 Feb 15 [cited 2019 Mar 22];207(2):621–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/7864852

  • 18. Burns CS Aronoff-Spencer E Legname G Prusiner SB Antholine WE Gerfen GJ et al. Copper coordination in the full-length recombinant prion protein. Biochemistry [Internet]. 2003 Jun 10 [cited 2019 Mar 22];42(22):6794–803. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12779334

  • 19. Jones S Batchelor M Bhelt D Clarke AR Collinge J Jackson GS. Recombinant prion protein does not possess SOD-1 activity. Biochem J [Internet]. Portland Press Ltd; 2005 Dec 1 [cited 2019 Mar 25];392(Pt 2):309–12. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16156720

  • 20. Brown DR Qin K Herms JW Madlung A Manson J Strome R et al. The cellular prion protein binds copper in vivo. Nature [Internet]. Nature Publishing Group; 1997 Dec 18 [cited 2019 Feb 14];390(6661):684–7. Available from: http://www.nature.com/articles/37783

  • 21. Brown LR Harris DA. Copper and zinc cause delivery of the prion protein from the plasma membrane to a subset of early endosomes and the Golgi. J Neurochem [Internet]. 2003 Oct [cited 2019 Mar 25];87(2):353–63. Available from: http://www.ncbi.nlm.nih.gov/pubmed/14511113

  • 22. Sánchez-López C Rossetti G Quintanar L Carloni P. Structural Determinants of the Prion Protein N-Terminus and Its Adducts with Copper Ions. Int J Mol Sci [Internet]. 2018 Dec 20 [cited 2019 Mar 22];20(1):18. Available from: http://www.mdpi.com/1422-0067/20/1/18

  • 23. Giese A Buchholz M Herms J Kretzschmar HA. Mouse brain synaptosomes accumulate copper-67 efficiently by two distinct processes independent of cellular prion protein. J Mol Neurosci [Internet]. 2005 [cited 2019 Mar 22];27(3):347–54. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16280605

  • 24. Zatta P Frank A. Copper deficiency and neurological disorders in man and animals [Internet]. Vol. 54 Brain Research Reviews. 2007 [cited 2019 Mar 22]. p. 19–33. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0165017306001147

  • 25. Schlief ML Gitlin JD. Copper Homeostasis in the CNS: A Novel Link Between the NMDA Receptor and Copper Homeostasis in the Hippocampus. Mol Neurobiol [Internet]. 2006 Apr [cited 2019 Mar 22];33(2):81–90. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16603790

  • 26. Leah Harris Z Gitlin JD. Genetic and molecular basis for copper toxicity [Internet]. Vol. 63 American Journal of Clinical Nutrition. 1996 [cited 2019 Mar 20]. p. 836–77. Available from: https://academic.oup.com/ajcn/article-abstract/63/5/836S/4651493

  • 27. Hwang HS Park SH Park YW Kwon HS Sohn IS. Expression of cellular prion protein in the placentas of women with normal and preeclamptic pregnancies. Acta Obstet Gynecol Scand [Internet]. John Wiley & Sons Ltd (10.1111); 2010 Sep 1 [cited 2019 Mar 25];89(9):1155–61. Available from: http://doi.wiley.com/10.3109/00016349.2010.498497

  • 28. Caniggia I Winter J Lye SJ Post M. Oxygen and placental development during the first trimester: Implications for the pathophysiology of pre-eclampsia. Placenta [Internet]. W.B. Saunders; 2000 Mar 1 [cited 2019 Mar 21];21(SUPPL.1):S25–30. Available from: https://www.sciencedirect.com/science/article/pii/S0143400499905222?via%3Dihub

  • 29. Donadio S Alfaidy N De Keukeleire B Micoud J Feige JJ Challis JRG et al. Expression and localization of cellular prion and COMMD1 proteins in human placenta throughout pregnancy. Placenta [Internet]. 2007 Aug [cited 2019 Mar 22];28(8–9):907–11. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0143400406002761

  • 30. Jeong JK Seo JS Moon MH Lee YJ Seol JW Park SY. Hypoxia-inducible factor-1 alpha regulates prion protein expression to protect against neuron cell damage. Neurobiol Aging [Internet]. Elsevier; 2012 May 1 [cited 2019 Mar 21];33(5):1006.e1-1006.e10. Available from: https://www.sciencedirect.com/science/article/pii/S0197458011003915?via%3Dihub

  • 31. Liang J Bai F Luo G Wang J Liu J Ge F et al. Hypoxia induced overexpression of PrP(C) in gastric cancer cell lines. Cancer Biol Ther [Internet]. 2007 May [cited 2019 Mar 22];6(5):769–74. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17387271

  • 32. Seo J-S Seol J-W Moon M-H Jeong J-K Lee Y-J Park S-Y. Hypoxia protects neuronal cells from human prion protein fragment-induced apoptosis. J Neurochem [Internet]. John Wiley & Sons Ltd (10.1111); 2010 Feb 1 [cited 2019 Mar 21];112(3):715–22. Available from: http://doi.wiley.com/10.1111/j.1471-4159.2009.06496.x

  • 33. Jeong JK Park SY. Transcriptional regulation of specific protein 1 (SP1) by hypoxia-inducible factor 1 alpha (HIF-1α) leads to PRNP expression and neuroprotection from toxic prion peptide. Biochem Biophys Res Commun [Internet]. 2012 Dec 7 [cited 2019 Mar 22];429(1–2):93–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23131565

  • 34. Simák J Holada K D’Agnillo F Janota J Vostal JG. Cellular prion protein is expressed on endothelial cells and is released during apoptosis on membrane microparticles found in human plasma. Transfusion [Internet]. John Wiley & Sons Ltd (10.1111); 2002 Mar 1 [cited 2019 Mar 21];42(3):334–42. Available from: http://doi.wiley.com/10.1046/j.1537-2995.2002.00072.x

  • 35. Starke R Drummond O MacGregor I Biggerstaff J Gale R Camilleri R et al. The expression of prion protein by endothelial cells: a source of the plasma form of prion protein? Br J Haematol [Internet]. John Wiley & Sons Ltd (10.1111); 2002 Dec 1 [cited 2019 Mar 21];119(3):863–73. Available from: http://doi.wiley.com/10.1046/j.1365-2141.2002.03847.x

  • 36. Couraud P-O Perriere N Chaverot N Enslen H Cazaubon S Viegas P. Junctional expression of the prion protein PrPC by brain endothelial cells: a role in trans-endothelial migration of human monocytes. J Cell Sci [Internet]. 2006 Nov 15 [cited 2019 Mar 22];119(22):4634–43. Available from: http://jcs.biologists.org/cgi/doi/10.1242/jcs.03222

  • 37. Schulze T Follet J Bailly Y Lemaire-Vieille C Cesbron J-Y Heinen E et al. Epithelial and endothelial expression of the green fluorescent protein reporter gene under the control of bovine prion protein (PrP) gene regulatory sequences in transgenic mice. Proc Natl Acad Sci [Internet]. 2002 May 9 [cited 2019 Mar 22];97(10):5422–7. Available from: http://www.pnas.org/cgi/doi/10.1073/pnas.080081197

  • 38. Singh SK Sinha P Mishra L Srikrishna S. Neuroprotective Role of a Novel Copper Chelator against A β 42 Induced Neurotoxicity. Int J Alzheimers Dis [Internet]. 2013 [cited 2019 Mar 22];2013:1–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24159420

  • 39. Urso E Maffia M. Behind the Link between Copper and Angiogenesis: Established Mechanisms and an Overview on the Role of Vascular Copper Transport Systems [Internet]. Vol. 52 Journal of Vascular Research. 2015 [cited 2019 Feb 18]. p. 172–96. Available from: https://www.karger.com/Article/FullText/438485

  • 40. Zlokovic B V. The Blood-Brain Barrier in Health and Chronic Neurodegenerative Disorders. Neuron [Internet]. 2008 Jan 24 [cited 2019 Mar 21];57(2):178–201. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18215617

  • 41. Guo S Lo EH. Dysfunctional Cell-Cell Signaling in the Neurovascular Unit as a Paradigm for Central Nervous System Disease. Stroke [Internet]. 2009 Mar 1 [cited 2019 Mar 21];40(3 Supplement 1):S4–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19064781

  • 42. Nelson SK Huang CJ Mathias MM Allen KGD. Copper-marginal and copper-deficient diets decrease aortic prostacyclin production and copper-dependent superoxide dismutase activity and increase aortic lipid peroxidation in rats. J Nutr [Internet]. 1992 Nov 1 [cited 2019 Mar 22];122(11):2101–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1432251

  • 43. Tanaka KI Kawahara M. Copper enhances zinc-induced neurotoxicity and the endoplasmic reticulum stress response in a neuronal model of vascular dementia. Front Neurosci [Internet]. Frontiers; 2017 Feb 9 [cited 2019 Mar 20];11(FEB):58. Available from: http://journal.frontiersin.org/article/10.3389/fnins.2017.00058/full

  • 44. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods [Internet]. 1983 Dec 16 [cited 2019 Mar 22];65(1–2):55–63. Available from: http://www.ncbi.nlm.nih.gov/pubmed/6606682

  • 45. Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res [Internet]. 2001 May 1 [cited 2019 Mar 22];29(9):e45. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11328886

  • 46. Foty R. A Simple Hanging Drop Cell Culture Protocol for Generation of 3D Spheroids. J Vis Exp [Internet]. 2011 May 6 [cited 2019 Mar 22];(51). Available from: http://www.ncbi.nlm.nih.gov/pubmed/21587162

  • 47. Mehta G Hsiao AY Ingram M Luker GD Takayama S. Opportunities and challenges for use of tumor spheroids as models to test drug delivery and efficacy. J Control Release [Internet]. 2012 Dec 10 [cited 2019 Apr 8];164(2):192–204. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22613880

  • 48. Landriscina M Bagalá C Mandinova A Soldi R Micucci I Bellum S et al. Copper induces the assembly of a multiprotein aggregate implicated in the release of fibroblast growth factor 1 in response to stress. J Biol Chem [Internet]. 2001 Jul 6 [cited 2019 Mar 22];276(27):25549–57. Available from: http://www.jbc.org/lookup/doi/10.1074/jbc.M102925200

  • 49. Yee EMH Brandl MB Pasquier E Cirillo G Kimpton K Kavallaris M et al. Dextran-Catechin inhibits angiogenesis by disrupting copper homeostasis in endothelial cells. Sci Rep [Internet]. 2017 Dec 9 [cited 2019 Mar 22];7(1):7638. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28794411

  • 50. Soncin F Guitton JD Cartwright T Badet J. Interaction of human angiogenin with copper modulates angiogenin binding to endothelial cells. Biochem Biophys Res Commun [Internet]. 1997 Jul 30 [cited 2019 Mar 25];236(3):604–10. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0006291X97970182

  • 51. Pan Q Kleer CG van Golen KL Irani J Bottema KM Bias C et al. Copper deficiency induced by tetrathiomolybdate suppresses tumor growth and angiogenesis. Cancer Res [Internet]. 2002 Sep 1 [cited 2019 Mar 25];62(17):4854–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12208730

  • 52. Harris DA. Trafficking turnover and membrane topology of PrP. Br Med Bull [Internet]. 2003 [cited 2019 Mar 22];66:71–85. Available from: http://www.ncbi.nlm.nih.gov/pubmed/14522850

  • 53. Narayanan G R BS Vuyyuru H Muthuvel B Konerirajapuram Natrajan S. CTR1 silencing inhibits angiogenesis by limiting copper entry into endothelial cells. Arai K editor. PLoS One [Internet]. 2013 Sep 9 [cited 2019 Mar 25];8(9):e71982. Available from: https://dx.plos.org/10.1371/journal.pone.0071982

  • 54. Mays CE Coomaraswamy J Watts JC Yang J Ko KWS Strome B et al. Endoproteolytic processing of the mammalian prion glycoprotein family. FEBS J [Internet]. 2014 Feb [cited 2019 Mar 22];281(3):862–76. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24286250

  • 55. Winklhofer KF Tatzelt J Haass C. The two faces of protein misfolding: gain- and loss-of-function in neurodegenerative diseases. EMBO J [Internet]. 2008 Jan 23 [cited 2019 Mar 22];27(2):336–49. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18216876

  • 56. Salvesen Ø Tatzelt J Tranulis MA. The prion protein in neuroimmune crosstalk. Neurochem Int [Internet]. 2018 Nov [cited 2019 Mar 22]; Available from: https://linkinghub.elsevier.com/retrieve/pii/S0197018618303073

  • 57. Cereghetti GM Schweiger A Glockshuber R Van Doorslaer S. Electron Paramagnetic Resonance Evidence for Binding of Cu2+ to the C-terminal Domain of the Murine Prion Protein. Biophys J [Internet]. 2001 Jul [cited 2019 Mar 22];81(1):516–25. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11423433

  • 58. Whittal RM Ball HL Cohen FE Burlingame AL Prusiner SB Baldwin MA. Copper binding to octarepeat peptides of the prion protein monitored by mass spectrometry. Protein Sci [Internet]. 2000 Feb [cited 2019 Mar 22];9(2):332–43. Available from: http://doi.wiley.com/10.1110/ps.9.2.332

  • 59. Massimino ML Griffoni C Spisni E Toni M Tomasi V. Involvement of caveolae and caveolae-like domains in signalling cell survival and angiogenesis. Cell Signal [Internet]. 2002 Feb [cited 2019 Mar 22];14(2):93–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11781132

  • 60. Satoh J Kuroda Y Katamine S. Gene expression profile in prion protein-deficient fibroblasts in culture. Am J Pathol [Internet]. 2000 Jul [cited 2019 Mar 22];157(1):59–68. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10880376

  • 61. Li C Yan Z Yang J Chen H Li H Jiang Y et al. Neuroprotective effects of resveratrol on ischemic injury mediated by modulating the release of neurotransmitter and neuromodulator in rats. Neurochem Int [Internet]. 2010 Feb [cited 2017 Jul 19];56(3):495–500. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0197018609003337

  • 62. Rogers JT Lahiri DK. Metal and inflammatory targets for Alzheimer’s disease. Curr Drug Targets [Internet]. 2004 Aug [cited 2019 Mar 25];5(6):535–51. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15270200

  • 63. Rivera-Mancía S Pérez-Neri I Ríos C Tristán-López L Rivera-Espinosa L Montes S. The transition metals copper and iron in neurodegenerative diseases. Chem Biol Interact [Internet]. 2010 Jul 30 [cited 2019 Mar 25];186(2):184–99. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0009279710002711

  • 64. De Riccardis L Buccolieri A Muci M Pitotti E De Robertis F Trianni G et al. Copper and ceruloplasmin dyshomeostasis in serum and cerebrospinal fluid of multiple sclerosis subjects. Biochim Biophys Acta - Mol Basis Dis [Internet]. 2018 May [cited 2019 Mar 11];1864(5):1828–38. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0925443918300875

  • 65. Robertson M Evans K Robinson A Trimble M Lascelles P. Abnormalities of copper in Gilles de la Tourette syndrome. Biol Psychiatry [Internet]. 1987 Aug [cited 2019 Mar 25];22(8):968–78. Available from: http://www.ncbi.nlm.nih.gov/pubmed/3475133

  • 66. Gorman DA Zhu H Anderson GM Davies M Peterson BS. Ferritin Levels and Their Association With Regional Brain Volumes in Tourette’s Syndrome. Am J Psychiatry [Internet]. 2006 Jul 1 [cited 2019 Mar 25];163(7):1264–72. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16816233

  • 67. Udvardi PT Nespoli E Rizzo F Hengerer B Ludolph AG. Nondopaminergic Neurotransmission in the Pathophysiology of Tourette Syndrome. In 2013 [cited 2018 Mar 5]. p. 95–130. Available from: http://linkinghub.elsevier.com/retrieve/pii/B9780124115460000044

  • 68. Hamilton IMJ Gilmore WS Strain JJ. Marginal Copper Deficiency and Atherosclerosis. Biol Trace Elem Res [Internet]. 2000 [cited 2019 Mar 22];78(1–3):179–90. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11314977

  • 69. Casserly IP Topol EJ. Convergence of atherosclerosis and alzheimer’s disease: Cholesterol inflammation and misfolded proteins. Discov Med [Internet]. 2004 Jun [cited 2019 Mar 22];4(22):149–56. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20704977

  • 70. Yu G Jiang L Xu Y Guo H Liu H Zhang Y et al. Silencing Prion Protein in MDA-MB-435 Breast Cancer Cells Leads to Pleiotropic Cellular Responses to Cytotoxic Stimuli. Lasmezas CI editor. PLoS One [Internet]. 2012 Nov 2 [cited 2019 Mar 22];7(11):e48146. Available from: http://dx.plos.org/10.1371/journal.pone.0048146

  • 71. Corsaro A Bajetto A Thellung S Begani G Villa V Nizzari M et al. Cellular prion protein controls stem cell-like properties of human glioblastoma tumor-initiating cells. Oncotarget [Internet]. Impact Journals LLC; 2016 Jun 21 [cited 2019 Mar 20];7(25):38638–57. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27229535

  • 72. Málaga-Trillo E Solis GP Schrock Y Geiss C Luncz L Thomanetz V et al. Regulation of embryonic cell adhesion by the prion protein. Weissmann C editor. PLoS Biol [Internet]. 2009 Mar 10 [cited 2019 Mar 22];7(3):e55. Available from: https://dx.plos.org/10.1371/journal.pbio.1000055

  • 73. Santuccione A Sytnyk V Leshchyns’ka I Schachner M. Prion protein recruits its neuronal receptor NCAM to lipid rafts to activate p59fyn and to enhance neurite outgrowth. J Cell Biol [Internet]. 2005 Apr 25 [cited 2019 Mar 22];169(2):341–54. Available from: http://www.jcb.org/lookup/doi/10.1083/jcb.200409127

  • 74. Zocche Soprana H Canes Souza L Debbas V Martins Laurindo FR. Cellular prion protein (PrPC) and superoxide dismutase (SOD) in vascular cells under oxidative stress. Exp Toxicol Pathol [Internet]. 2011 Mar [cited 2019 Mar 22];63(3):229–36. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0940299309002991

  • 75. Sauer H Dagdanova A Hescheler J Wartenberg M. Redox-regulation of intrinsic prion expression in multicellular prostate tumor spheroids. Free Radic Biol Med [Internet]. 1999 Dec [cited 2019 Mar 22];27(11–12):1276–83. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10641721

  • 76. Shyu W-C Lin S-Z Chiang M-F Ding D-C Li K-W Chen S-F et al. Overexpression of PrPC by adenovirus-mediated gene targeting reduces ischemic injury in a stroke rat model. J Neurosci [Internet]. 2005 Sep 28 [cited 2019 Mar 22];25(39):8967–77. Available from: http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.1115-05.2005

  • 77. Dupuis L Mbebi C Gonzalez de Aguilar J-L Rene F Muller A de Tapia M et al. Loss of Prion Protein in a Transgenic Model of Amyotrophic Lateral Sclerosis. Mol Cell Neurosci [Internet]. 2002 Feb [cited 2019 Mar 22];19(2):216–24. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11860274

  • 78. Whitehouse IJ Miners JS Glennon EBC Kehoe PG Love S Kellett KAB et al. Prion protein is decreased in Alzheimer’s brain and inversely correlates with BACE1 activity amyloid-β levels and Braak stage. PLoS One [Internet]. Public Library of Science; 2013 [cited 2019 Mar 25];8(4):e59554. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23577068

  • 79. Hood JD Cheresh DA. Role of integrins in cell invasion and migration. Nat Rev Cancer [Internet]. 2002 Feb [cited 2019 Mar 25];2(2):91–100. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12635172

  • 80. Loubet D Dakowski C Pietri M Pradines E Bernard S Callebert J et al. Neuritogenesis: the prion protein controls β1 integrin signaling activity. FASEB J [Internet]. 2012 Feb [cited 2019 Mar 22];26(2):678–90. Available from: http://www.fasebj.org/doi/10.1096/fj.11-185579

  • 81. Gauczynski S Peyrin JM Haïk S Leucht C Hundt C Rieger R et al. The 37-kDa/67-kDa laminin receptor acts as the cell-surface receptor for the cellular prion protein. EMBO J [Internet]. 2001 Nov 1 [cited 2019 Mar 22];20(21):5863–75. Available from: http://emboj.embopress.org/cgi/doi/10.1093/emboj/20.21.5863

  • 82. Mbazima V Da Costa Dias B Omar A Jovanovic K Weiss SFT. Interactions between PrP(c) and other ligands with the 37-kDa/67-kDa laminin receptor. Front Biosci (Landmark Ed [Internet]. 2010 Jun 1 [cited 2019 Mar 22];15:1150–63. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20515747

  • 83. Watts JC Huo H Bai Y Ehsani S Jeon AHW Won AH et al. Interactome analyses identify ties of PrP and its mammalian paralogs to oligomannosidic N-glycans and endoplasmic reticulum-derived chaperones. Mabbott N editor. PLoS Pathog [Internet]. 2009 Oct 2 [cited 2019 Mar 22];5(10):e1000608. Available from: https://dx.plos.org/10.1371/journal.ppat.1000608

Search
Journal information
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 144 144 57
PDF Downloads 90 90 24