Toxic, but beneficial compounds from endophytic fungi of Carica papaya

Open access


Fungi remain a promising source of novel biologically active compounds with potentials in drug discovery and development. This study was aimed at investigating the secondary metabolites from endophytic Fusarium equiseti and Epicoccum sorghinum associated with leaves of Carica papaya collected from Agulu, Anambra State, Nigeria. Isolation of the endophytic fungi, taxonomic identification, fermentation, extraction and isolation of fungal secondary metabolites were carried out using standard procedures. Chromatographic separation and spectroscopic analyses of the fungal secondary metabolites yielded three toxigenic compounds - equisetin and its epimer 5’- epiequisetin from F. equiseti, and tenuazonic acid from E. sorghinum. These compounds are known to possess several beneficial biological properties that can be explored for pharmaceutical, agricultural or industrial purposes.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Saeed F Arshad MU Pasha I Naz R Batool R Khan AA Nasir MA Shafique B. Nutritional and Phyto-Therapeutic Potential of Papaya (Carica papaya Linn.): An Overview. International Journal of Food Properties 2014; 7:1637–1653.

  • 2. Gurunga S Škalko-Basnet N. Wound healing properties of Carica papaya latex: In vivo evaluation in mice burn model. Journal of Ethnopharmacology 2009; 121:338–341.

  • 3. Mikhalchik EV Ivanova AV Anurov MV Titkova SM Penkov LY Kharaeva ZF Korkina LG. Wound-healing effect of papaya-based preparation in experimental thermal trauma. Bulletin of Experimental Biology and Medicine 2004; 137:560–562.

  • 4. Owoyele BV Adebukola OM Funmilayo AA Soladoye AO. Anti-inflammatory activities of ethanolic extract of Carica papaya leaves. Inflammopharmacol. 2008; 16:168-173.

  • 5. Amazu LU Azikiwe CCA Njoku CJ Osuala FN Nwosu PJC Ajugwo AO Enye JC. Anti-inflammatory activity of the methanolic extract of the seeds of Carica papaya in experimental animals. Asi. Pac.J Trop. Med. 2010:884-886.

  • 6. Lohiya NK Manivannan B Mishra PK Pathak N Sriram S Bhande SS Panneerdoss S. Chloroform extract of Carica papaya seeds induces long term reversible azoospermia in langur monkey. Asian J Androl. 2002; 4(1):17-26.

  • 7. Poharkar RD Saraswat RK Kotkar S. Survey of plants having anti-fertility activity from western Ghat area of Maharashtra state. J Herb Med Toxicol. 2010; 4(2):71-75.

  • 8. Stepek G Behnke JM Buttle DJ Duce IR. Natural plant cysteine proteinases as anthelmintics. Trends in Parasitology. 2004; 20(7):322-327.

  • 9. Desser L Rehberger A Kokron E Paukovits W. Cytokine synthesis in human peripheral blood mononuclear cells after oral administration of polyenzyme preparation. J Oncology. 1993; 50:403-407.

  • 10. Fauziya S Krishnamurthy R. Papaya (Carica papaya): Source material for anticancer. CIBTech J Pharm Sci. 2013; 2(1):25-34.

  • 11. Doughari J Elmahmood AM Manzara S. Studies on the antibacterial activity of root extracts of Carica papaya L. Afr. J Microbiol. Res. 2007:37-41.

  • 12. Emeruwa AC. Antibacterial substance from Carica papaya fruit extract. J Nat Prod. 1982; 45(2):123-127.

  • 13. Leite AA Nardi RM Nicoli JR Chartone SE Nascimento AM. Carica papaya seed macerate as inhibitor of conjugative R plasmid transfer from Salmonella typhimurium to E. coli in vitro and in the digestive tract of genobiotic mice. J Gen Appl Microbiol. 2005; 51(1):21-26.

  • 14. Giordiani R Siepaio M Moulin TJ Regli P. Antifungal action of Carica papaya latex isolation of fungal cell wall hydrolyzing enzymes Mycoses. 1991; 34(11-12):467-477.

  • 15. N’guessan K Tiébré M Aké-Assi E Zirihi GN. Ethnobotanical study of plants used to treat arterial hypertension in traditional medicine by Abbey and Krobou populations of Aboville (Cȏte-d’Ivoire). European. J Scient Res. 2009; 35(1):85-98.

  • 16. Mojica-Henshaw MP Francisco AD Deguzman F Tingo T. Possible Immunomodulatory action of Carica papaya seed extract. Clin Hemorheol Microcirc. 2003; 29(3-4):219-229.

  • 17. Titanji VP Zofou D Ngemenya MN. The Antimalarial Potential of Medicinal Plants Used for the Treatment of Malaria in Cameroonian Folk Medicine. Afr. J. Tradit. Complement. Altern. Med. 2008; 5(3):302–321.

  • 18. Bungorn S Varima W Pisamai L Jamsai S Dusit J. Diuretic effects of selected Thai indigenous medicinal plants in rat. J Ethnopharmacol. 2001; 75(2-3):185-190.

  • 19. Wright CI Van-Buren L Kroner CI Koning MMG. Herbal medicines as diuretics: A review of the scientific evidence. J Ethnopharmacol. 2007; 114:1-31.

  • 20. Mailafia S Okoh GR Olabode HOK Osanupin R. Isolation and identification of fungi associated with spoilt fruits vended in Gwagwalada market Abuja Nigeria Veterinary World 2017 10(4) 393-397.

  • 21. Echerenwa MC Umechuruba CI. Post-harvest fungal diseases of pawpaw (Carica papaya L.) fruits and seeds in Nigeria. Global Journal of Pure and Applied Sciences 2004; 10(1):69-73.

  • 22. Oyeyipo OO Iwuji CA Owhoeli O. Public Health Implication of Mycotoxin Contaminated Pawpaw (Carica papaya L) on Sale in Nigerian Markets. International Journal of Health Research 2012; 5(1):23-27.

  • 23. Gupta AK Pathak VN. Survey of fruit market for papaya fruit rot by fungi pathogens. Indian J Mycol 1986; 16:152-254.

  • 24. Oniha M Egwari L. Fruit Leaf and Stem Diseases of Carica papaya L. Journal of International Scientific Publications 2015; 3:398-407.

  • 25. Krishnan P Bhat R Kush A Ravikumar P. Isolation and functional characterization of bacterial endophytes from Carica papaya fruits. Journal of Applied Microbiology 2012; 113:308-317.

  • 26. Mello NRTD Cavalcanti MS Ferreira MRV Oliveira WCR Ribeiro IATA Santos IP Silva APS. Enzymatic Activity of Endophytic Fungi Isolated from Papaya (Carica papaya L.). 4th International Symposium in Biochemistry of Macromolecules and Biotechnology. XI Northeast Regional Meeting of SBBq Recife PE Brazil; December 5 to 7 2012.

  • 27. Okezie UM Eze PM Ajaghaku DL Okoye FBC Esimone CO. Isolation and screening of secondary metabolites from endophytic fungi of Vernonia amygdalina and Carica papaya for their cytotoxic activity. Planta Med. 2015; 81:PM_177.

  • 28. Wang H Eze PM Hӧfert S Janiak C Hartmann R Okoye FBC Esimone CO Orfali RS Dai H Liu Z Proksch P. Substituted L-tryptophan-L-phenyllactic acid conjugates produced by an endophytic fungus Aspergillus aculeatus using an OSMAC approach. RSC Adv. 2018; 8:7863–7872.

  • 29. Eze PM Ojimba NK Abonyi DO Chukwunwejim CR Abba CC Okoye FBC Esimone CO. Antimicrobial Activity of Metabolites of an Endophytic Fungus Isolated from the Leaves of Citrus jambhiri (Rutaceae). Trop. J. Nat. Prod. Res. 2018; 2(3):145-149.

  • 30. Kjer J Debbab A Aly AH Proksch P. Methods for isolation of marine-derived endophytic fungi and their bioactive secondary products. Nat. Protoc. 2010; 5:479–490.

  • 31. Singh SB Zink DL Goetz MA Dombrowskia AW Polishooka JD Hazuda DJ. Equisetin and a novel opposite stereochemical homolog phomasetin two fungal metabolites as inhibitors of HIV-1 integrase. Tetrahedron Lett. 1998; 39:2243-2246.

  • 32. Whitt J Shipley SM Newman DJ Zuck KM. Tetramic Acid Analogues Produced by Coculture of Saccharopolyspora erythraea with Fusarium pallidoroseum. J. Nat. Prod. 2014; 77:173−177.

  • 33. Phillips NJ Goodwin JT Fraiman A Cole RJ Lynn DG. Characterization of the Fusarium toxin equisetin: the use phenylboronates in structure assignment. J. Am. Chem. Soc. 1989; 111(21):8223–8231.

  • 34. Burke LT Dixon DJ Ley SV Rodrıguez F. Total synthesis of the Fusarium toxin equisetin. Org. Biomol. Chem. 2005; 3:274–280.

  • 35. Davis ND Diener UL Morgan-Jones G. Tenuazonic Acid Production by Alternaria alternata and Alternaria tenuissima Isolated from Cotton. Applied and Environmental Microbiology 1977; 34(2):155-157.

  • 36. Logrieco A Bottalico A Mulé G Moretti A Perrone G. Epidemiology of toxigenic fungi and their associated mycotoxins for some Mediterranean crops. European Journal of Plant Pathology 2003; 109:645–667.

  • 37. Katoch M Salgotra A Singh G. Endophytic fungi found in association with Bacopa monnieri as potential producers of industrial enzymes and antimicrobial bioactive compounds. Brazilian Archives of Biology and Technology. 2014; 57(5):714-722.

  • 38. Devaraju R Sreedharamurthy S. Endophytic Mycoflora of Mirabilis jalapa L. and studies on Antimicrobial activity of its endophytic Fusarium sp. Asian J Exp Biol Sci. 2011; 2:75-79.

  • 39. Waskiewicz A Golinski P Karolewski Z Irzykowska L Bocianowski J Kostecki M Weber Z. Formation of fumonisins and other secondary metabolites by Fusarium oxysporum and F. proliferatum: a comparative study. Food Addit. Contam. Part A Chem. Anal. Control Expo Risk Assess. 2010; 27(5):608-15.

  • 40. Tatum JH Baker RA Berry RE. Metabolites of Fusarium solani. Phytochemistry. 1989; 28(1):283-284.

  • 41. Savard ME Miller JD Ciotola M Watson AK. Secondary Metabolites Produced by a Strain of Fusarium oxysporum used for Striga Control in West Africa. Biocontrol Science and Technology. 1997: 7(1):61-64.

  • 42. Hernandes L Marangon AV Salci T Svidzinski TIE. Toxic thermoresistant metabolites of Fusarium oxysporum are capable of inducing histopathological alterations in Wistar rats. The Journal of Venomous Animals and Toxins including Tropical Diseases. 2012; 18(2):144-149.

  • 43. Goswami RS Dong Y Punja ZK. Host range and mycotoxin production by Fusarium equiseti isolates originating from ginseng fields. Canadian Journal of Plant Pathology. 2008; 30(1):155-160.

  • 44. Marín P Moretti A Ritieni A Jurado M Vázquez C González-Jaén MT. Phylogenetic analyses and toxigenic profiles of Fusarium equiseti and Fusarium acuminatum isolated from cereals from Southern Europe. Food Microbiol. 2012; 31(2): 229-37.

  • 45. Langseth W Bernhoft A Rundberget T Kosiak B Gareis M. Mycotoxin production and cytotoxicity of Fusarium strains isolated from Norwegian cereals. Mycopathologia 1998; 144:103-113.

  • 46. Burmeister HR Bennett GA Vesonder RF Hesseltine CW. Antibiotic production by Fusarium equiseti NRRL 5537. Antimicrobial Agents and Chemotherapy. 1974; 5:634-639.

  • 47. Wheeler MH Stipanovic RD Puckhaber LS. Phytotoxicity of equisetin and epi-equisetin isolated from Fusarium equiseti and F. pallidoroseum. Mycological Research 1999; 103(8):967–973.

  • 48. Vesonder RF Tjarks LW Rohwedder WK Burmeister HR Laugal JA. Equisetin an antibiotic from Fusarium equiseti NRRL 5537 identified as a derivative of N-methyl-24-pyrollidone. J Antibiot (Tokyo) 1979; 32(7):759-61.

  • 49. Desjardins AE Proctor RH. Molecular biology of Fusarium mycotoxins. Int J Food Microbiol. 2007; 119:47-50.

  • 50. Patham B Duffy J Lane A Davis RC Wipf P Fewell SW Brodsky JL Mensa-Wilmot K. Post-translational import of protein into the endoplasmic reticulum of a trypanosome: An in vitro system for discovery of anti-trypanosomal chemical entities. Biochem J. 2009; 419(2):507-517.

  • 51. König T Kapus A Sarkadi B. Effects of equisetin on rat liver mitochondria: evidence for inhibition of substrate anion carriers of the inner membrane. J Bioenerg Biomembr. 1993: 25(5):537-45.

  • 52. Tziveleka LA Vagias C Roussis V. Natural products with anti-HIV activity from marine organisms. Curr. Top. Med. Chem. 2003: 3(13):1512-35.

  • 53. Singh S.B. Discovery and development of natural product inhibitors of HIV-1 integrase. In HIV-1 Integrase: Mechanism and Inhibitor Design. Neamat N (Ed). John Wiley & Sons 2011.

  • 54. Brian PW Dawkins AW Grove JF Hemming HG Lowe D Norris GLF. Phytotoxic Compounds produced by Fusarium equiseti. Journal of Experimental Botany 1961; 13(34):1-12.

  • 55. Dosik GM Barlogie B Johnston DA Murphy WK Drewinko B. Lethal and cytokinetic effects of anguidine on a human colon cancer cell line. Cancer Res. 1978; 38(10):3304-9.

  • 56. Xie W Mirocha CJ Wen Y. Formyl Fusarochromanone and Diacetyl Fusarochromanone Two New Metabolites of Fusarium equiseti. Journal of Natural Products. 1991; 54(4):1165-1167.

  • 57. Mahdavian E Palyok P Adelmund S Williams-Hart T Furmanski BD Kim Y Gu Y Barzegar M Wu Y Bhinge KN Kolluru GK Quick Q Liu Y Kevil CG Salvatore BA Huang S Clifford JL. Biological activities of fusarochromanone: a potent anti-cancer agent. BMC Research Notes 2014; 7:601.

  • 58. Thrane U. Fusarium species and their specific profiles of secondary metabolites. In: Chelkowski J editor. Fusarium—mycotoxins taxonomy and pathogenicity. Amsterdam: Elsevier 1989:199–226.

  • 59. Pillai TG Nair B Swamy GEM. Isolation of Host Specific Endophytic Fungus Fusarium equiseti from Nothopegia Bedomei Wayanadica Occurring in the Southern Parts of India. J. Plant Pathol. Microb. 2015; 6:308.

  • 60. Aveskamp MM de Gruyter J Woudenberg JHC Verkley GJM Crous PW. Highlights of the Didymellaceae: a polyphasic approach to characterize Phoma and related pleosporalean genera. Stud. Mycol. 2010; 65:1–60.

  • 61. Li C Sarotti AM Yang B Turkson J Cao S. A New N-methoxypyridone from the Co-Cultivation of Hawaiian Endophytic Fungi Camporesia sambuci FT1061 and Epicoccum sorghinum FT1062. Molecules 2017 22(1166) 1-8.

  • 62. Ray P Sushilkumar Pandey AK. Survey and selection of potential pathogens for biological control of water hyacinth. Indian Journal of Weed Science 2008; 40(1&2):75-78.

  • 63. Liu PQ Wei MY Zhu L Wang RB Li BJ Weng QY Chen QH. First Report of Leaf Spot on Taro Caused by Epicoccum sorghinum in China. Plant Disease 2018; 102(3):682

  • 64. Yuan CG Liao T Tan HW Li QQ Lin W. First Report of Leaf Spot Caused by Phoma sorghina on Tobacco in China. Plant Disease 2016; 100(8):1790.

  • 65 Chen XL Wang YH Luo T. First Report of Leaf Spot Caused by Phoma sorghina on Oxalis debilis in China. Plant Disease 2017; 101(6):1047

  • 66. Rai M Deshmukh P Gade A Ingle A Kövics GJ Irinyi L. Phoma Saccardo: Distribution secondary metabolite production and biotechnological applications. Critical Reviews in Microbiology 2009; 35(3):182–196.

  • 67. Oliveira RC Davenport KW Hovde B Silva D Chain PSG Correa B Rodrigues DF. Draft Genome Sequence of Sorghum Grain Mold Fungus Epicoccum sorghinum a Producer of Tenuazonic Acid. Genome Announc. 2017; 5(4):e01495-16.

  • 68. Yun C Motoyama T Osada H. Biosynthesis of the mycotoxin tenuazonic acid by a fungal NRPS–PKS hybrid enzyme. Nature Communications 2015 6:8758.

  • 69. Zida EP Néya JB Soalla WR Jensen SM Stokholm MS Andresen M Kabir MH Sérémé P Lund OS. Effect of sorghum seed treatment in Burkina Faso varies with baseline crop performance and geographical location. Afr. Crop Sci. J. 2016; 24:109–125.

  • 70. Stokholm MS Wulff EG Zida EP Thio IG Néya JB Soalla RW Głazowska SE Andresen M Topbjerg HB Boelt B Lund OS. DNA barcoding and isolation of vertically transmitted ascomycetes in sorghum from Burkina Faso: Epicoccum sorghinum is dominant in seedlings and appears as a common root pathogen. Microbiological Research 2016; 191:38–50.

  • 71. Sanodiya BS Thakur GS Baghel RK Pandey AK Prasad GBKS Bisen PS. Isolation and characterization of tenuazonic acid produced by Alternaria alternata a potential bioherbicidal agent for control of Lantana camara. Journal of Plant Protection Research 2010; 50(2):133-139.

  • 72. Sibanda EP Mabandla M Mduluza T. Antioxidant activity of fungal endophytes isolated from Kigelia africana Annona senegalensis and Vitex payos. Microbiology: Current Research 2017; 1(2):61.

  • 73. Rosett T Sankhala RH Stickings CE Taylor MEU Thomas R. Biochemistry of microorganisms. CIII. Metabolites of Alternaria tenuis auct: Culture filtrate products. Biochem. J. 1957; 67:390–400.

  • 74. Shigeura HT Gordon CN. The biological activity of tenuazonic acid. Biochemistry 1963; 2:1132–1137.

  • 75. Janardhanan KK Husain A. Phytotoxic activity of tenuazonic acid isolated from Alternaria alternata (Fr.) Keissler causing leaf blight of Datura innoxia Mill. and its effect on host metabolism. J. Phytopathol. 1984; 111:305–311.

  • 76. Umetsu N Muramatsu T Honda H Tamari K. Studies of the Effect of Tenuazonic Acid on Plant Cells and Seedlings. Agr. BioI. Chem. 1974; 38(4):791 – 799.

  • 77. Meena M.; Swapnil P.; Upadhyay R.S. Isolation characterization and toxicological potential of Alternaria mycotoxins (TeA AOH and AME) in different Alternaria species from various regions of India. Scientific Reports 2017; 7:8777.

  • 78. Steyn P.S. Rabie C.J. Characterization of magnesium and calcium tenuazonate from Phoma sorghina. Phytochemistry. 1976; 15:1977-1979.

  • 79. Suzuki S Sano F Yuki H. Studies on antiviral agents. IV. Biological Activity of Tenuazonic Acid derivatives. Chem. Pharm. Bull. 1967; 15(8):11220-1122.

  • 80. Motlagh MRS. Fusarium equiseti (Corda) Saccardo as biological control agent of barnyard grass (Echinochloacrus galli L.) in rice fields. Food Agriculture and Environment 2011; 9(1):310-313.

  • 81. Horinouchi H Muslim A Suzuki T Hyakumachi M. Fusarium equiseti GF191 as an effective biocontrol agent against Fusarium crown and root rot of tomato in rock wool systems. Crop Protection. 2007; 26:1514-1523.

  • 82. Horinouchi H Katsuyama N Taguchi Y Hyakumachi M. Control of Fusarium crown and root rot of tomato in a soil system by combination of a plant growth-promoting fungus Fusarium equiseti and biodegradable pots. Crop Protection 2008; 27:859-864.

  • 83. Horinouchi H Muslim A Hyakumachi M. Biocontrol of Fusarium Wilt of Spinach by the Plant Growth Promoting Fungus Fusarium equiseti GF183. Journal of Plant Pathology. 2010; 92(1):249-254.

  • 84. Abbasher AA Hess DE Sauerborn J. Fungal pathogens for biological control of Striga hermonthica on sorghum and pearl millet in West Africa. African Crop Science Journal 1998; 6(2):179-188.

  • 85. Juntunen K Mäkinen S Isoniemi S Valtakari L Pelzer A Jänis J Paloheimo M. A New Subtilase-Like Protease Deriving from Fusarium equiseti with High Potential for Industrial Applications. Appl Biochem Biotechnol. 2015; 177(2):407–430.

Journal information
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 223 223 52
PDF Downloads 219 220 24