Comparative analysis of drought responses in Phaseolus vulgaris (common bean) and P. coccineus (runner bean) cultivars

Mihaela Morosan 1 , 2 , Mohamad Al Hassan 1 , 3 , Miguel A. Naranjo 1 , 4 , María P. López-Gresa 5 , Monica Boscaiu 6  and Oscar Vicente 5
  • 1 Instituto de Biologia Molecular y Celular de Plantas, Universitat Politecnica de Valencia (UPV-CSIC), 46022 , Valencia, Spain
  • 2 Faculty of Horticulture, University of Agricultural Sciences and Veterinary Medicine (USAMV), 400372 , Cluj-Napoca, Romania
  • 3 The New Zealand Institute for Plant & Food Research Ltd, , Auckland, New Zealand
  • 4 Tervalis S.L., 44002 , Teruel, Spain
  • 5 Instituto de Biologia Molecular y Celular de Plantas, Universitat Politecnica de Valencia (UPV-CSIC), 46022 , Valencia, Spain
  • 6 Instituto Agroforestal Mediterraneo, Universitat Politecnica de Valencia (UPV), 46022 , Valencia, Spain


Genetic improvement of crop drought tolerance has become an urgent need for increasing agricultural yields and food production, to feed a growing human population in the context of global climate change. To get insights into the most relevant mechanisms underlying drought resistance in beans, we have analysed the responses to water deficit of three Phaseolus vulgaris (common bean) and one P. coccineus (runner bean) cultivars, focusing on the accumulation of specific osmolytes, a conserved response to abiotic stress in plants. Changes in osmolyte levels were correlated with the relative tolerance to water stress of the studied cultivars. Drought tolerance in Phaseolus largely depends on the accumulation of myo-inositol; glycine betaine may also contribute to tolerance in P. coccineus (but not in P. vulgaris). Proline, another common osmolyte, is a reliable marker of the level of stress affecting bean plants, but is not directly involved in tolerance mechanisms, as its drought-dependent accumulation is lowest in the most tolerant cultivar. We suggest that, by measuring the levels of proline and myo-inositol in water-stressed plants, a large number of cultivars could be easily and rapidly screened to select promising candidates to be used in breeding programmes for improving drought tolerance in beans.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Boyer JS. Plant productivity and environment. Science 1982; 218: 443-448.

  • 2. Munns R, Tester M. Mechanisms of salinity tolerance. Annu Rev Plant Biol 2008; 59: 651-681.

  • 3. IPCC. Intergovernmental panel on climate change, 5th Assessment Report. WGII, Clim. Chang.: Impacts, adaptation, and vulnerability. 2014.

  • 4. Morton JF. The impact of climate change on smallholder and subsistence agriculture. Proc Natl Acad Sci USA 2007; 104: 19680-19685.

  • 5. Fita A, Rodríguez-Burruezo A, Boscaiu M, Prohens J, Vicente O. Breeding and domesticating crops adapted to drought and salinity: A new paradigm for increasing food production. Front Plant Sci 2015; 6(273). doi:

    • Crossref
    • Export Citation
  • 6. Varshney RK, Nayak SN, May GD, Jackson SA. Next-generation sequencing technologies and their implications for crop genetics and breeding. Trends Biotechnol 2009; 27: 522-530.

  • 7. Ceccarelli S., Grando S, Impiglia A. Choice of selection strategy in breeding barley for stress environments. Euphytica 1988; 103: 307-318.

  • 8. Blair MW, Soler A, Cortés AJ. Diversification and population structure in common beans (Phaseolus vulgaris L.). PLoS ONE 2012; 7: e49488. doi:

    • Crossref
    • Export Citation
  • 9. Broughton WJ, Hernández G, Blair M, Beebe S, Gepts P, Vanderleyden J. Beans (Phaseolus spp.) – Model food legumes. Plant Soil 2003; 252: 55-128.

  • 10. Gepts P, Debouck DG. Origin, domestication, and evolution of the common bean, Phaseolus vulgaris. In: Van Schoonhoven A, Voysest O, eds. Common Beans: Research for Crop Improvement. 1991. Cab Intern, Wallingford, Oxon, pp 7-53.

  • 11. Bellucci E, Bitocchi E, Rau D, Rodriguez M, Biagetti E, Giardini A, Attene G, Nanni L, Papa R. Genomics of origin, domestication and evolution of Phaseolus vulgaris. In: Tuberosa R, Graner A, Frison E, eds. Genomics of Plant Genetics Resources. 2014.Dordrecht: Springer, 483-507.

  • 12. Vargas Vázquez MLP, Muruaga Martínez JS, Lépiz Ildefonso R, Pérez Guerrero A. The INIFAP collection of runner bean (Phaseolus coccineus L.) I. Geographical distribution of collection sites. Rev Mex Cienc Agric 2012; 3:1247-1259.

  • 13. Szilagyi, L. Influence of drought on seed yield components in common bean. Bulgarian J Plant Physiol 2003; Special issue: 320- 330.

  • 14. Namugwanya M, Tenywa JS, Otabbong E, Mubiru D, Basamba TA. Development of common bean (Phaseolus vulgaris L.) production under low soil phosphorus and drought in Sub-Saharan Africa: a review. J Sustain Dev 2014; 7: 128-139.

  • 15. Al Hassan M, Morosan M, Lopez-Gresa M., Prohens J, Vicente O, Boscaiu M. Salinity-Induced variation in biochemical markers provides insight into the mechanisms of salt tolerance in common (Phaseolus vulgaris) and runner (P. coccineus) beans. Int J Mol Sci 2016; 17(9): 1582; doi:

    • Crossref
    • Export Citation
  • 16. Hoagland DR, Arnon DI. The water-culture method for growing plants without soil. Circular California Agricultural Experiment Station 1950; 34: 32-63.

  • 17. Bates LS, Waldren RP, Teare ID. Rapid determination of free proline for water stress studies. Plant and Soil 1973; 39: 205-207.

  • 18. Grieve CM, Grattan SR. Rapid assay for the determination of water soluble quaternary ammonium compounds. Plant Soil 1983; 70: 303-307.

  • 19. Dubois M, Gilles KA, Hamilton JK, Reberd PA, Smith F. Colorimetric method for determination of sugars and related substances. Anal Chem 1956; 28: 350-356. doi:

    • Crossref
    • Export Citation
  • 20. Zhu J-K. Plant salt tolerance. Trends Plant Sci 2001; 6: 66-71.

  • 21. Subbarao GV, Johansen C. Potential for genetic improvement in salinity tolerance in legumes: Pigeon Pea. In: Pessarakli M (ed) Handbook of Plants and Crop Stress. 1994. Marcel Dekker Inc, New York, pp 581-595.

  • 22. Gutierrez M, Escalante-Estrada JA, Rodriguez-Gonzalez MT. Differences in salt tolerance between Phaseolus vulgaris and P. coccineus cultivars. Int J Agric Res 2009; 4: 270-278.

  • 23. Ashraf M, Iram A. Drought stress induced changes in some organic substances in nodules and other plant parts of two potential legumes differing in salt tolerance. Flora 2005; 200: 535-546.

  • 24. Svetleva D, Krastev V, Dimova D, Mitrovska Z, Miteva D, Parvanova P, Chankova S. Drought tolerance of Bulgarian common bean genotypes, characterised by some biochemical markers for oxidative stress. Cent Eur Agr J 2012; 13: 349-361.

  • 25. Ghanbari AA, Mousavi SH, Mousapou Gorji A, Rao I. Effects of water stress on leaves and seeds of bean (Phaseolus vulgaris L.). Turk J Field Crops 2013; 18: 73-77.

  • 26. Rosales MA, Ocampo E, Rodríguez-Valentín R, Olvera-Carrillo Y, Acosta-Gallegos J, Covarrubias AA. Physiological analysis of common bean (Phaseolus vulgaris L.) cultivars uncovers characteristics related to terminal drought resistance. Plant Physiol Biochem 2012; 56: 24-34. doi:

    • Crossref
    • Export Citation
  • 27. Ashraf M, Foolad MR. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Env Exp Bot 2007; 59: 206-216.

  • 28. Ali AA, Abdel-Fattah RI. Osmolytes-antioxidant behavior in Phaseolus vulgaris and Hordeum vulgare with brassinosteroid under salt stress. J Agron 2006; 5: 167-174.

  • 29. Gil R, Boscaiu M, Lull C, Bautista I, Lidón A, Vicente O. Are soluble carbohydrates ecologically relevant for salt tolerance in halophytes? Funct Plant Biol 2013; 40: 805-818.

  • 30. Sassi S, Aydi S, Gonzalez EM, Arrese-Igor C, Abdelly C. Understanding osmotic stress tolerance in leaves and nodules of two Phaseolus vulgaris cultivars with contrasting drought tolerance. Symbiosis 2010; 52: 1-10.

  • 31. Vassey TL, Sharkey T. Mild water stress of Phaseolus vulgaris plants leads to reduced starch synthesis and extractable sucrose phosphate synthase activity. Plant Physiol 1989; 89: 1066-1070.

  • 32. Cuellar-Ortiz SM, Arrieta-Montiel MP, Acosta-Gallegos J, Covarrubias AA. Relationship between carbohydrate partitioning and drought resistance in common bean. Plant Cell Environ 2008; 31:1399-1409.

  • 33. Santos MG, Ribeiro RV, Machado EC, Pimentel C. Photosynthetic parameters and leaf water potential of five common bean genotypes under mild water deficit. Biol Plant 2009; 53: 229-236.

  • 34. Omae E, Kumar A, Shono M. Adaptation to high temperature and water deficit in the common bean (Phaseolus vulgaris L.) during the reproductive period. J Bot 2012; Article ID 803413. doi:

    • Crossref
    • Export Citation
  • 35. Beebe SE, Rao IM, Blair MW, Acosta-Gallegos JA. Phenotyping common beans for adaptation to drought. Front Physiol 2013; 4(35). doi:

    • Crossref
    • Export Citation

Journal + Issues