Antibiotic resistance in lactococci and enterococci: phenotypic and molecular-genetic aspects

Open access

Abstract

Extensive use of antibiotics in medicine, veterinary practice and animal husbandry has promoted the development and dissemination of bacterial drug resistance. The number of resistant pathogens causing common infectious diseases increases rapidly and creates worldwide public health problem. Commensal bacteria, including lactic acid bacteria of genera Enterococcus and Lactococcus colonizing gastrointestinal and urogenital tracts of humans and animals may act as vehicles of antibiotic resistance genes similar to those found in pathogens. Lactococci and enterococci are widely used in manufacturing of fermented products and as probiotics, therefore monitoring and control of transmissible antibiotic resistance determinants in industrial strains of these microorganisms is necessary to approve their Qualified Presumption of Safety status. Understanding the nature and molecular mechanisms of antibiotic resistance in enterococci and lactococci is essential, as intrinsic resistant bacteria pose no threat to environment and human health in contrast to bacteria with resistance acquired through horizontal transfer of resistance genes. The review summarizes current knowledge concerning intrinsic and acquired antibiotic resistance in Lactococcus and Enterococcus genera, and discusses role of enterococci and lactococci in distribution of this feature.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Dunny GM Leonard BA Hedberg PJ. Pheromone-inducible conjugation in Enterococcus faecalis: interbacterial and host-parasite chemical communication. J Bacteriol 1995; 177(4): 871-6.

  • 2. Spellberg B Guidos R Gilbert D Bradley J Boucher HW Scheld WM et al. The Epidemic of Antibiotic-Resistant Infections: A Call to Action for the Medical Community from the Infectious Diseases Society of America. Clin Infect Dis.2008; 46(2): 155-64.

  • 3. Grohmann E Muth G Espinosa M. Conjugative plasmid transfer in gram-positive bacteria. Microbiol Mol Biol Rev MMBR 2003; 67(2): 277-301.

  • 4. Nikaido H. Multidrug Resistance in Bacteria. Annu Rev Biochem 2009; 78(1): 119-46.

  • 5. Putman M van Veen HW Konings WN. Molecular properties of bacterial multidrug transporters. Microbiol Mol Biol Rev MMBR 2000; 64(4): 672-93.

  • 6. Rao GG. Risk factors for the spread of antibiotic-resistant bacteria. Drugs 1998; 55(3): 323-30.

  • 7. Schjorring S Krogfelt KA Schjorring S Krogfelt KA. Assessment of Bacterial Antibiotic Resistance Transfer in the Gut Assessment of Bacterial Antibiotic Resistance Transfer in the Gut. Int J Microbiol Int J Microbiol 2011; 2011:e312956.

  • 8. Ammor MS Mayo B. Selection criteria for lactic acid bacteria to be used as functional starter cultures in dry sausage production: An update. Meat Sci 2007; 76(1): 138-46.

  • 9. Salyers AA Gupta A Wang Y. Human intestinal bacteria as reservoirs for antibiotic resistance genes. Trends Microbiol 2004; 12(9): 412-6.

  • 10. Teuber M Meile L Schwarz F. Acquired antibiotic resistance in lactic acid bacteria from food. Antonie Van Leeuwenhoek 1999; 76(1-4): 115-37.

  • 11. Drake JW Charlesworth B Charlesworth D Crow JF. Rates of spontaneous mutation. Genetics 1998; 148(4): 1667-86.

  • 12. Khachatourians GG. Agricultural use of antibiotics and the evolution and transfer of antibiotic-resistant bacteria. CMAJ Can Med Assoc J 1998; 159(9): 1129-36.

  • 13. Wang HH Manuzon M Lehman M Wan K Luo H Wittum TE et al. Food commensal microbes as a potentially important avenue in transmitting antibiotic resistance genes. FEMS Microbiol Lett 2006; 254(2): 226-31.

  • 14. Aminov RI Mackie RI. Evolution and ecology of antibiotic resistance genes. FEMS Microbiol Lett. 2007; 271(2): 147-61.

  • 15. Clemente JC Ursell LK Parfrey LW Knight R. The impact of the gut microbiota on human health: an integrative view. Cell 2012; 148(6): 1258-70.

  • 16. Gueimonde M Salminen S Isolauri E. Presence of specific antibiotic (tet) resistance genes in infant faecal microbiota. FEMS Immunol Med Microbiol 2006; 48(1): 21-5.

  • 17. Hu Y Yang X Qin J Lu N Cheng G Wu N et al. Metagenome- wide analysis of antibiotic resistance genes in a large cohort of human gut microbiota. Nat Commun 2013; 4: 2151.

  • 18. Nandi S Maurer JJ Hofacre C Summers AO. Gram-positive bacteria are a major reservoir of Class 1 antibiotic resistance integrons in poultry litter. Proc Natl Acad Sci U S A 2004; 101(18): 7118-22.

  • 19. Gueimonde M Sanchez B G. de los Reyes-Gavilan C Margolles A. Antibiotic resistance in probiotic bacteria. Front Microbiol 4: 202.

  • 20. Hummel AS Hertel C Holzapfel WH Franz CMAP. Antibiotic resistances of starter and probiotic strains of lactic acid bacteria. Appl Environ Microbiol 2007; 73(3): 730-9.

  • 21. Tannock GW. Probiotic properties of lactic-acid bacteria: plenty of scope for fundamental R & D. Trends Biotechnol 1997; 15(7): 270-4.

  • 22. Klein G Pack A Bonaparte C Reuter G. Taxonomy and physiology of probiotic lactic acid bacteria. Int J Food Microbiol 1998; 41(2): 103-25.

  • 23. Lancefield RC. A serological differentiation of human and other groups of hemolytic streptococci. J Exp Med 1933; 57(4): 571-95.

  • 24. Schleifer KH Kilpper-Balz R. Transfer of Streptococcus faecalis and Streptococcus faecium to the Genus Enterococcus nom. rev. as Enterococcus faecalis comb. nov. and Enterococcus faecium comb. nov. Int J Syst Evol Microbiol 1984; 34(1): 31-4.

  • 25. Schleifer KH Kraus J Dvorak C Kilpper-Balz R Collins MD Fischer W. Transfer of Streptococcus lactis and Related Streptococci to the Genus Lactococcus gen. nov. Syst Appl Microbiol 1985; 6(2): 183-95.

  • 26. Facklam R Elliott JA. Identification classification and clinical relevance of catalase-negative gram-positive cocci excluding the streptococci and enterococci. Clin Microbiol Rev 1995; 8(4): 479-95.

  • 27. Furet J-P Firmesse O Gourmelon M Bridonneau C Tap J Mondot S et al. Comparative assessment of human and farm animal faecal microbiota using real-time quantitative PCR. FEMS Microbiol Ecol 2009; 68(3): 351-62.

  • 28. Muller T Ulrich A Ott EM Muller M. Identification of plant-associ ated enterococci. J Appl Microbiol 2001; 91(2): 268-78.

  • 29. Salama MS Musafija-Jeknic T Sandine WE Giovannoni SJ. An Ecological Study of Lactic Acid Bacteria: Isolation of New Strains of Lactococcus Including Lactococcus lactis subspecies cremoris. J Dairy Sci 1995; 78(5): 1004-17.

  • 30. Vanhoutte T Huys G Brandt E Swings J. Temporal stability analysis of the microbiota in human feces by denaturing gradient gel electrophoresis using universal and group-specific 16S rRNA gene primers. FEMS Microbiol Ecol 2004; 48(3): 437-46.

  • 31. Lavilla Lerma L Benomar N Valenzuela AS Casado Munoz M del C Galvez A Abriouel H. Role of EfrAB efflux pump in biocide tolerance and antibiotic resistance of Enterococcus faecalis and Enterococcus faecium isolated from traditional fermented foods and the effect of EDTA as EfrAB inhibitor. Food Microbiol 2014;44: 249-57.

  • 32. Leroy F De Vuyst L. Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends Food Sci Technol 2004; 15(2): 67-78.

  • 33. Pogačić T Kagkli D-M Sikora S Kalit S Havranek J Samaržija D. Experimental approaches for identification of indigenous lactococci isolated from traditional dairy products. Mljekarstvo 61: 3-14.

  • 34. Lucera A Costa C Conte A Del Nobile MA. Food applications of natural antimicrobial compounds. Front Microbiol 2012; 3(287): 287.

  • 35. Franz CMAP Huch M Abriouel H Holzapfel W Galvez A. Enterococci as probiotics and their implications in food safety. Int J Food Microbiol 2011; 151(2): 125-40.

  • 36. Kimoto H Kurisaki J Tsuji NM Ohmomo S Okamoto T. Lactococci as probiotic strains: adhesion to human enterocyte-like Caco-2 cells and tolerance to low pH and bile. Lett Appl Microbiol 1999; 29(5): 313-6.

  • 37. Allen HK Donato J Wang HH Cloud-Hansen KA Davies J Handelsman J. Call of the wild: antibiotic resistance genes in natural environments. Nat Rev Microbiol 2010; 8(4): 251-9.

  • 38. Martinez JL. Environmental pollution by antibiotics and by antibiotic resistance determinants. Environ Pollut Barking Essex 1987 2009; 157(11): 2893-902.

  • 39. Werner G Strommenger B Witte W. Acquired vancomycin resistance in clinically relevant pathogens. Future Microbiol 2008; 3: 547-562.

  • 40. Benveniste R Davies J. Mechanisms of antibiotic resistance in bacteria. Annu Rev Biochem 1973; 42: 471-506.

  • 41. Davies J. Inactivation of antibiotics and the dissemination of resistance genes. Science 1994; 264(5157): 375-82.

  • 42. Tenover FC. Mechanisms of Antimicrobial Resistance in Bacteria. Am J Med 2006; 119(6): 3-10.

  • 43. Chopra I Roberts M. Tetracycline Antibiotics: Mode of Action Applications Molecular Biology and Epidemiology of Bacterial Resistance. Microbiol Mol Biol Rev 2001; 65(2): 232-60.

  • 44. Bolhuis H Molenaar D Poelarends G Veen HW van Poolman B Driessen AJ et al. Proton motive force-driven and ATP-dependent drug extrusion systems in multidrug-resistant Lactococcus lactis. J Bacteriol 1994; 176(22): 6957-64.

  • 45. Chang G. Multidrug resistance ABC transporters. FEBS Lett 2003; 555(1): 102-5.

  • 46. Delmar JA Su C-C Yu EW. Bacterial Multidrug Efflux Transporters. Annu Rev Biophys 2014; 43(1): 93-117.

  • 47. Van Bambeke F Balzi E Tulkens PM. Antibiotic efflux pumps. Biochem Pharmacol 2000; 60(4): 457-70.

  • 48. van Veen HW Konings WN. The ABC family of multidrug transporters in microorganisms. Biochim Biophys Acta 1998; 1365(1- 2): 31-6.

  • 49. Jack DL Yang NM Saier MH. The drug/metabolite transporter superfamily. Eur J Biochem FEBS 2001; 268(13): 3620-39.

  • 50. Bolhuis H Poelarends G van Veen HW Poolman B Driessen AJ Konings WN. The Lactococcal lmrP gene encodes a proton motive force-dependent drug transporter. J Biol Chem 1995; 270(44): 26092-8.

  • 51. Hatfield HL Thomas A. Elimination of feed additive derived interferences in the assay for avoparcin. The Analyst 1986; 111(1): 95-6.

  • 52. Kruse H Johansen BK Rorvik LM Schaller G. The use of avoparcin as a growth promoter and the occurrence of vancomycin-resistant Enterococcus species in Norwegian poultry and swine production. Microb Drug Resist Larchmt N 1999; 5(2): 135-9.

  • 53. Aarestrup FM Agerso Y Gerner-Smidt P Madsen M Jensen LB. Comparison of antimicrobial resistance phenotypes and resistance genes in Enterococcus faecalis and Enterococcus faecium from humans in the community broilers and pigs in Denmark. Diagn Microbiol Infect Dis 2000; 37(2): 127-37.

  • 54. Aminov RI Garrigues-Jeanjean N Mackie RI. Molecular Ecology of Tetracycline Resistance: Development and Validation of Primers for Detection of Tetracycline Resistance Genes Encoding Ribosomal Protection Proteins. Appl Environ Microbiol 2001; 67(1): 22-32.

  • 55. Pavia M Nobile CGA Salpietro L Angelillo IF. Vancomycin Resistance and Antibiotic Susceptibility of Enterococci in Raw Meat. J Food Prot. 2000; 63(7): 912-5.

  • 56. Leavis HL Willems RJL Top J Bonten MJM. High-level ciprofloxacin resistance from point mutations in gyrA and parC confined to global hospital-adapted clonal lineage CC17 of Enterococcus faecium. J Clin Microbiol. 2006; 44(3): 1059-64.

  • 57. Arias CA Murray BE. The rise of the Enterococcus: beyond vancomycin resistance. Nat Rev Microbiol 2012; 10(4): 266-78.

  • 58. Deshpande LM Fritsche TR Moet GJ Biedenbach DJ Jones RN. Antimicrobial resistance and molecular epidemiology of vancomycin- resistant enterococci from North America and Europe: a report from the SENTRY antimicrobial surveillance program. Diagn Microbiol Infect Dis 2007; 58(2): 163-70.

  • 59. Werner G Coque TM Hammerum AM Hope R Hryniewicz W Johnson A et al. Emergence and spread of vancomycin resistance among enterococci in Europe. Euro Surveill Bull 2008; 13: 19046.

  • 60. Horvitz RA von Graevenitz A. A Clinical Study of the Role of Enterococci as Sole Agents of Wound and Tissue Infection. Yale J Biol Med 1977; 50(4): 391-5.

  • 61. Weber DJ Rutala WA. Role of environmental contamination in the transmission of vancomycin-resistant enterococci. Infect Control Hosp Epidemiol 1997; 18(5): 306-9.

  • 62. Palmer KL Gilmore MS. Multidrug-Resistant Enterococci Lack CRISPR-cas. mBio 2010; 1(4): e00227-10.

  • 63. van Veen HW Putman M Margolles A Sakamoto K Konings WN. Structure-function analysis of multidrug transporters in Lactococcus lactis. Biochim Biophys Acta 1999; 1461(2): 201-6.

  • 64. De Fabrizio SV Parada JL Ledford RA. Antibiotic resistance of Lactococcus lactis : an approach of genetic determinants location through model system. MAN Microbiol Aliments Nutr 1994 ;12(3): 307-15.

  • 65. Kastner S Perreten V Bleuler H Hugenschmidt G Lacroix C Meile L. Antibiotic susceptibility patterns and resistance genes of starter cultures and probiotic bacteria used in food. Syst Appl Microbiol 2006; 29(2): 145-55.

  • 66. Katla AK Kruse H Johnsen G Herikstad H. Antimicrobial susceptibility of starter culture bacteria used in Norwegian dairy products. Int J Food Microbiol 2001; 67(1-2): 147-52.

  • 67. Klarel I Konstabel C Werner G Huys G Vankerckhoven V Kahlmeter G et al. Antimicrobial susceptibilities of Lactobacillus Pediococcus and Lactococcus human isolates and cultures intended for probiotic or nutritional use. J Antimicrob Chemother 2007; 59(5): 900-12.

  • 68. van Veen HW Margolles A Putman M Sakamoto K Konings WN. Multidrug resistance in lactic acid bacteria: molecular mechanisms and clinical relevance. Antonie Van Leeuwenhoek 1999; 76(1-4): 347-52.

  • 69. Jacek Lubelski A de J. LmrCD is a major multidrug resistance transporter in Lactococcus lactis. Mol Microbiol. Mol Microbiol 2006; 61(3): 771-81.

  • 70. Lubelski J Konings WN Driessen AJM. Distribution and physiology of ABC-type transporters contributing to multidrug resistance in bacteria. Microbiol Mol Biol Rev MMBR 2007; 71(3): 463-76.

  • 71. Ren Q Kang KH Paulsen IT. TransportDB: a relational database of cellular membrane transport systems. Nucleic Acids Res 2004; 32(1): 284-8.

  • 72. Dawson RJP Locher KP. Structure of a bacterial multidrug ABC transporter. Nature 2006; 443(7108): 180-5.

  • 73. Putman M Van Veen HW Degener JE Konings WN. Antibiotic resistance: era of the multidrug pump. Mol Microbiol 2000; 36(3): 772-3.

  • 74. Bourdineaud J-P Nehme B Tesse S Lonvaud-Funel A. A bacterial gene homologous to ABC transporters protect Oenococcus oeni from ethanol and other stress factors in wine. Int J Food Microbiol 2004; 92(1): 1-14.

  • 75. Konings WN Kok J Kuipers OP Poolman B. Lactic acid bacteria: the bugs of the new millennium. Curr Opin Microbiol 2000; 3(3): 276-82.

  • 76. Konings WN Lolkema JS Bolhuis H van Veen HW Poolman B Driessen AJ. The role of transport processes in survival of lactic acid bacteria. Energy transduction and multidrug resistance. Antonie Van Leeuwenhoek 1997; 71(1-2): 117-28.

  • 77. Konings WN Poelarends GJ. Bacterial multidrug resistance mediated by a homologue of the human multidrug transporter P-glycoprotein. IUBMB Life 2002; 53(4-5): 213-8.

  • 78. Poelarends GJ Mazurkiewicz P Konings WN. Multidrug transporters and antibiotic resistance in Lactococcus lactis. Biochim Biophys Acta BBA - Bioenerg 2002; 1555(1-3): 1-7.

  • 79. Putman M van Veen HW Degener JE Konings WN. The lactococcal secondary multidrug transporter LmrP confers resistance to lincosamides macrolides streptogramins and tetracyclines. Microbiol Read Engl 2001; 147(10): 2873-80.

  • 80. Schaedler TA Veen HW van. A flexible cation binding site in the multidrug major facilitator superfamily transporter LmrP is associated with variable proton coupling. FASEB J 2010; 24(10): 3653-61.

  • 81. Markham PN Neyfakh AA. Efflux-mediated drug resistance in Gram-positive bacteria. Curr Opin Microbiol 2001; 4(5): 509-14.

  • 82. Sood S Malhotra M Das BK Kapil A. Enterococcal infections & antimicrobial resistance. Indian J Med Res 2008; 128(2): 111-21.

  • 83. Courvalin P. Predictable and unpredictable evolution of antibiotic resistance. J Intern Med 2008; 264(1): 4-16.

  • 84. Lee E-W Huda MN Kuroda T Mizushima T Tsuchiya T. EfrAB an ABC multidrug efflux pump in Enterococcus faecalis. Antimicrob Agents Chemother 2003; 47(12): 3733-8.

  • 85. Li X-Z Nikaido H. Efflux-mediated drug resistance in bacteria. Drugs 2004; 64(2): 159-204.

  • 86. Perreten V Schwarz F Cresta L Boeglin M Dasen G Teuber M. Antibiotic resistance spread in food. Nature 1997; 389(6653): 801-2.

  • 87. Arsene S Leclercq R. Role of a qnr-like gene in the intrinsic resistance of Enterococcus faecalis to fluoroquinolones. Antimicrob Agents Chemother 2007; 51(9): 3254-8.

  • 88. Depardieu F Podglajen I Leclercq R Collatz E Courvalin P. Modes and Modulations of Antibiotic Resistance Gene Expression. Clin Microbiol Rev 2007; 20(1): 79-114.

  • 89. Dutka-Malen S Evers S Courvalin P. Detection of glycopeptide resistance genotypes and identification to the species level of clinically relevant enterococci by PCR. J Clin Microbiol 1995; 33(1): 24-7.

  • 90. Fines M Perichon B Reynolds P Sahm DF Courvalin P. VanE a new type of acquired glycopeptide resistance in Enterococcus faecalis BM4405. Antimicrob Agents Chemother 1999; 43(9): 2161-4.

  • 91. Teuber M Schwarz F Meile L. Antibiotic Resistance and Transfer in Lactic Acid Bacteria. In: Wood BJB Warner PJ editors. Genetics of Lactic Acid Bacteria (Internet). Springer US 2003. p. 317-54. Available from: http://link.springer.com/chapter/10.1007/978-1-4615-0191-6_11

  • 92. Florez AB Delgado S Mayo B. Antimicrobial susceptibility of lactic acid bacteria isolated from a cheese environment. Can J Microbiol 2005; 51(1): 51-8.

  • 93. Walther C Rossano A Thomann A Perreten V. Antibiotic resistance in Lactococcus species from bovine milk: presence of a mutated multidrug transporter mdt(A) gene in susceptible Lactococcus garvieae strains. Vet Microbiol 2008; 131(3-4): 348-57.

  • 94. Manson JM Hancock LE Gilmore MS. Mechanism of chromosomal transfer of Enterococcus faecalis pathogenicity island capsule antimicrobial resistance and other traits. Proc Natl Acad Sci U S A 2010; 107(27): 12269-74.

  • 95. Mills S McAuliffe OE Coffey A Fitzgerald GF Ross RP. Plasmids of lactococci - genetic accessories or genetic necessities? FEMS Microbiol Rev 2006; 30(2): 243-73.

  • 96. Mundy LM Sahm DF Gilmore M. Relationships between enterococcal virulence and antimicrobial resistance. Clin Microbiol Rev 2000; 13(4): 513-22.

  • 97. Bačun-Družina V Mrvčić J Butorac A Gjuračić K. The influence of gene transfer on the lactic acid bacteria evolution. Mljekarstvo 2009; 59(3): 181-92.

  • 98. Devirgiliis C Zinno P Perozzi G. Update on antibiotic resistance in foodborne Lactobacillus and Lactococcus species. Front Microbiol 4: 301.

  • 99. Gasson MJ. Genetic transfer systems in lactic acid bacteria. Antonie Van Leeuwenhoek 1983; 49(3): 275-82.

  • 100. Ravi A Avershina E Ludvigsen J L’Abee-Lund TM Rudi K. Integrons in the Intestinal Microbiota as Reservoirs for Transmission of Antibiotic Resistance Genes. Pathogens 2014; 3(2): 238-48.

  • 101. Davies J Davies D. Origins and Evolution of Antibiotic Resistance. Microbiol Mol Biol Rev MMBR 2010; 74(3): 417-33.

  • 102. Toleman MA Bennett PM Walsh TR. ISCR elements: novel gene-capturing systems of the 21st century? Microbiol Mol Biol Rev MMBR 2006; 70(2): 296-316.

  • 103. Rowe-Magnus DA Mazel D. Integrons: natural tools for bacterial genome evolution. Curr Opin Microbiol 2001; 4(5): 565-9.

  • 104. Mathur S Singh R. Antibiotic resistance in food lactic acid bacteria ‒ a review. Int J Food Microbiol 2005; 105(3): 281-95.

  • 105. Wang HH Manuzon M Lehman M Wan K Luo H Wittum TE et al. Food commensal microbes as a potentially important avenue in transmitting antibiotic resistance genes. FEMS Microbiol Lett 2006; 255(2)328-328.

  • 106. Toomey N Monaghan A Fanning S Bolton DJ. Assessment of antimicrobial resistance transfer between lactic acid bacteria and potential foodborne pathogens using in vitro methods and mating in a food matrix. Foodborne Pathog Dis 2009; 6(8): 925-33.

  • 107. Toomey N Monaghan A Fanning S Bolton D. Transfer of antibiotic resistance marker genes between lactic acid bacteria in model rumen and plant environments. Appl Environ Microbiol 2009; 75(10): 3146-52.

  • 108. Palmer KL Kos VN Gilmore MS. Horizontal gene transfer and the genomics of enterococcal antibiotic resistance. Curr Opin Microbiol 2010; 13(5): 632-9.

  • 109. Igimi S Ryu CH Park SH Sasaki Y Sasaki T Kumagai S. Transfer of conjugative plasmid pAM beta 1 from Lactococcus lactis to mouse intestinal bacteria. Lett Appl Microbiol 1996; 23(1): 31-5.

  • 110. Clewell DB. Movable genetic elements and antibiotic resistance in enterococci. Eur J Clin Microbiol Infect Dis 1990; 9(2): 90-102.

  • 111. Maki T Santos MD Kondo H Hirono I Aoki T. A Transferable 20-Kilobase Multiple Drug Resistance-Conferring R Plasmid (pKL0018) from a Fish Pathogen (Lactococcus garvieae) Is Highly Homologous to a Conjugative Multiple Drug Resistance-Conferring Enterococcal Plasmid. Appl Environ Microbiol 2009; 75(10): 3370-2.

  • 112. Schwarz FV Perreten V Teuber M. Sequence of the 50-kb conjugative multiresistance plasmid pRE25 from Enterococcus faecalis RE25. Plasmid 2001; 46(3): 170-87.

  • 113. Weisblum B. Erythromycin resistance by ribosome modification. Antimicrob Agents Chemother 1995; 39(3): 577-85.

  • 114. Cauwerts K Decostere A De Graef EM Haesebrouck F Pasmans F. High prevalence of tetracycline resistance in Enterococcus isolates from broilers carrying the erm(B) gene. Avian Pathol J WVPA. 2007; 36(5): 395-9.

  • 115. Clewell DB Flannagan SE Jaworski DD. Unconstrained bacterial promiscuity: the Tn916-Tn1545 family of conjugative transposons. Trends Microbiol 1995; 3(6): 229-36.

  • 116. Huys G D’Haene K Collard J-M Swings J. Prevalence and molecular characterization of tetracycline resistance in Enterococcus isolates from food. Appl Environ Microbiol 2004; 70(3): 1555-62.

  • 117. Shaw JH Clewell DB. Complete nucleotide sequence of macrolide- lincosamide-streptogramin B-resistance transposon Tn917 in Streptococcus faecalis. J Bacteriol 1985; 164(2): 782-96.

  • 118. Bertrand S Huys G Yde M D’Haene K Tardy F Vrints M et al. Detection and characterization of tet(M) in tetracycline-resistant Listeria strains from human and food-processing origins in Belgium and France. J Med Microbiol 2005; 54(12): 1151-6.

  • 119. Sievert DM Rudrik JT Patel JB McDonald LC Wilkins MJ Hageman JC. Vancomycin-resistant Staphylococcus aureus in the United States 2002-2006. Clin Infect Dis Off Publ Infect Dis Soc Am 2008; 46(5): 668-74.

  • 120. Daly C Fitzgerald GF O’Connor L Davis R. Technological and Health benefits of Dairy Starter Cultures. Int Dairy J 1998; 8(3): 195-205.

  • 121. Levy SB. The challenge of antibiotic resistance. Sci Am 1998; 278(3): 46-53.

  • 122. Nallapareddy SR Wenxiang H Weinstock GM Murray BE. Molecular characterization of a widespread pathogenic and antibiotic resistance-receptive Enterococcus faecalis lineage and dissemination of its putative pathogenicity island. J Bacteriol 2005; 187(16): 5709-18.

  • 123. Capita R Alonso-Calleja C. Antibiotic-resistant bacteria: a challenge for the food industry. Crit Rev Food Sci Nutr 2013; 53(1): 11-48.

  • 124. Huycke MM Sahm DF Gilmore MS. Multiple-drug resistant enterococci: the nature of the problem and an agenda for the future. Emerg Infect Dis 1998; 4(2): 239-49.

  • 125. Wang H McEntire JC Zhang L Li X Doyle M. The transfer of antibiotic resistance from food to humans: facts implications and future directions. Rev Sci Tech Int Off Epizoot 2012; 31(1): 249-60.

Search
Journal information
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 277 123 8
PDF Downloads 149 88 7