Graphical Tools of Discrete Longitudinal Data Presentation in R

Open access


Good graphical presentation of data is useful during the whole analysis process from the first glimpse into the data to the model fitting and presentation of results. The most popular way of longitudinal data presentation are separate (for each wave, in cross-sectional dimension) comparisons of figures. However, plotting the data over time is useful in suggesting appropriate modeling techniques to deal with the heterogeneity observed in the trajectories. The main aim of this paper is to present the changing perceptions of the financial situation in Poland using different graphical tools for the heterogonous discrete longitudinal data sets and present demographics features for those changes. We will focus on the most important features of the categorical longitudinal data – category sequences and their graphical presentation. We aim to characterize the analyzed sequences on the basis of unidimensional indicators and composite complexity measures, as well as using mainly TraMineR [Gabadinho et al. 2017] package of R.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Billari F.C. 2001 The analysis of early life courses: Complex description of the transition to adulthood Journal of Population Research 18(2) pp. 119-142.

  • Brzinsky-Fay C. Kohler U. Luniak M. 2006 Sequence analysis with stata The Stata Journal 6(4) pp. 435-460.

  • Elzinga C.H. Liefbroer A.C. 2007 De-standardization of family-life trajectories of young adults: A cross-national comparison using sequence analysis European Journal of Population 23 225-250

  • Gabadinho A. Ritschard G. Müller N.S. Studer M. 2010 Indice de complexité pour le tri et la comparison de séquences catégorielles Revue des nouvelles technlologies de l’information RNTI E-19 pp. 61-66.

  • Gabadinho A. Ritschard G. Müller N.S. Studer M. 2011 Analyzing and visualizing state sequences in R with TraMineR Journal of Statistical Software 40(4) pp. 1-37.

  • Gabadinho A. Studer M. Müller N. Bürgin R. Fonta P.A. Ritschard G. 2017 TraMineR – Trajectory Miner: A Toolbox for Exploring and Rendering Sequence Version 2.0-7

  • Helske J. Helske S. 2017 Hidden Markov Models for live sequences and other multi-variate multi-channel categorical time series Version 1.0.8

  • Muthén B. Shedden K. 1999 Finite mixture modeling with mixture outcomes using the EM algorithm Biometrics 55(2) pp. 463-469.

  • Ritschard G. Gabadinho A. Studer M. Müller N.S. 2009 Converting between Various Sequence Representations [in:] Z. Ras A. Dardzinska Advances in Data Management Studies in Computational Intelligence 223 Springer-Verlag Berlin pp. 155-175 DOI:10.1007/978-3-642-02190-9\_8.

  • Scherer S. 2001 Early career patterns: a comparison of Great Britain and West Germany European Sociological Review 17(2) pp. 119-144.

  • Singer J.D. Willett J.B. 2003 Applied longitudinal data analysis: Modeling change and event occurrence Oxford UK Oxford University Press.

  • Social Diagnosis 2015 Objective and Subjective Quality of Life in Poland Czapinski J. Panek T. (eds.) Warszawa Social Monitoring Council (22.11.2017)

  • Tueller S.J. 2017 longCatEDA – Package for Plotting Categorical Longitudinal and Time-Series. Version 0.31

  • Tueller S.J. Dorn R.A. Bobashev G.V. 2016 longCatEDA: Package for Plotting Categorical Longitudinal and Time-Series Data Methods Report RTI Press. 2016 Feb; 2016: MR-0033-1602 DOI: 10.3768/

Journal information
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 122 122 6
PDF Downloads 73 73 6