Analysis of Innovations in the European Union Via Ensemble Symbolic Density Clustering

Open access


Innovations play a very important role in the modern economy. They are the key to a higher quality of life, better jobs and economy and sustainable development. The innovation policy is a key element of both national and European Union strategy. The main aim of this paper is to present an ensemble clustering of European Union countries (member states) considering their innovativeness. In the empirical section, symbolic density-based ensemble clustering is used to obtain the co-occurrence matrix. The paper uses symbolicDA, clusterSim and dbscan packages of R software for all calculations. Four different clusters where obtained in the result of clustering. Cluster 1 contains highinnovative countries (innovation leaders). This cluster is also the least homogenous. Cluster 2 contains post-communist countries mainly from central Europe. These countries can be seen as rather mid-low innovative (they try to “catch up” with innovation leaders). Cluster 3 contains moderate innovators. Cluster 4 contains two countries that are also mid-innovative.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Hinneburg A. Keim D. 1998 An efficient approach to clustering in large multimedia databases with noise Proceedings of the 4th International Conference on Knowledge Discovery and Data Mining pp. 58-65.

  • Hobday M. 2005 Firm-level innovation models: Perspectives on research in developed and developing countries Technology Analysis & Strategic Management 17 pp. 121-146.

  • Hollanders H. Es-Sadki N. (eds.) 2017a European Innovation Scoreboard. Methodology Report

  • Hollanders H. Es-Sadki N. (eds.) 2017b European Innovation Scoreboard growth/industry/innovation/facts-figures/scoreboards.

  • Hollanders H. Es-Sadki N. Kaberva M. (eds.) 2015 Innovation Union Scoreboard http://ec.europa. eu/growth/industry/innovation/facts-figures/scoreboards.

  • Hornik K. 2005 A CLUE for CLUster ensembles Journal of Statistical Software vol. 14 pp. 65-72.

  • Jahirabadkar S. Kulkarni P. 2013 Clustering for high dimensional data: density based subspace clustering algorithms International Journal of Computer Applications vol. 63 issue 20 pp. 29-35.

  • Kahn K.B. 2012 The PDMA handbook of new product development John Wiley & Sons Inc. Hoboken NJ.

  • Kailing K. Kriegel H.-P. Kröger P. 2004 Density-connected subspace clustering for high-dimensional data Proc. SIAM Int. Conf. on Data Mining pp. 246-257.

  • Lafley A.G. Charan R. 2008 The Game-Changer: How You Can Drive Revenue and Profit Growth with Innovation Crown Business New York.

  • Leisch F. 1999 Bagged Clustering Adaptive Information Systems and Modelling in Economics and Management Science Working Papers 1999 SFB p. 51.

  • Mikołajczyk B. 2013 Innowacyjność przedsiębiorstw w krajach UE - pomiar i ocena Annales Universitatis

  • Mariae Curie-Skłodowska Lublin vol. XLVII 3 pp. 421-431.

  • Noirhomme-Fraiture M. Brito P. 2011 Far beyond the classical data models: symbolic data analysis Statistical Analysis and Data Mining vol. 4 issue 2 pp. 157-170.

  • Nowak P. 2012 Poziom innowacyjności polskiej gospodarki na tle krajów UE Prace Komisji Geografii Przemysłu nr 19 pp. 153-168.

  • O’Sullivan D. Dooley L. 2009 Applying Innovation SAGE Publications Thousand Oakes CA.

  • Pełka M. 2012 Ensemble approach for clustering of interval-valued symbolic data Statistics in Transition vol. 13 issue 2 pp. 335-342.

  • Pełka M. 2013 Clustering of symbolic data with application of ensemble approach Acta Universitatis

  • Lodziensis. Folia Oeconomica vol. 285 pp. 89-95.

  • Pełka M. 2016 A comparison study for spectral ensemble and spectral mean-shift clustering approaches for interval-valued symbolic data Analysis of Large and Complex Data pp. 137-146.

  • Radicic D. Pugh G. Hollanders H. Wintjes R. Fairburn J. 2016 The impact of innovation support programs on small and medium enterprises innovation in traditional manufacturing industries: An evaluation for seven European Union regions Environment and Planning C: Government and Policy 34(8) pp. 1425-1452.

  • Regulation (EU) No 1291/2013 of the European Parliament and of the Council of 11 December 2013 establishing Horizon 2020 - the Framework Programme for Research and Innovation (2014-2020) and repealing Decision No 1982/2006/EC h2020/legal_basis/fp/h2020-eu-establact_en.pdf.

  • Rendón E. Abundez I. Arizmendi A. Quiroz E. 2011 Internal versus external cluster quality indexes International Journal of Computers and Communications issue 1 vol. 5 27-34.

  • Rynardowska-Kurzbauer J. 2015 Innowacyjność wybranych krajów Europy Środkowo-Wschodniej Zeszyty Naukowe Politechniki Śląskiej seria „Organizacja i Zarządzanie” nr 86 pp. 93-101.

  • Sander J. Ester M. Kriegel H.-P. Xu X. 1998 Density-Based Clustering in Spatial Databases: The

  • Algorithm GDBSCAN and Its Applications Data Mining and Knowledge Discovery vol. 2 issue 2 pp. 169-194.

  • Sheikholeslami G. Chatterjee S. Zhang A. 1998 Wavecluster: a multi-resolution clustering approach for very large spatial databases Proceedings of the 24th VLDB Conference pp. 428-439.

  • Silverstein D. Samuel P. DeCarlo N. 2009 The Innovator’s Toolkit: 50+ Techniques for Predictable and Sustainable Organic Growth John Wiley & Sons Hoboken NJ.

  • Stec M. 2009 Innowacyjność krajów Unii Europejskiej Gospodarka Narodowa nr 11-12 pp. 45-65.

  • Trott P. 2012 Innovation Management and New Product Development (5th ed.) FT/Prentice Hall Harlow England.

  • Van de Ven A. Polley D.E. Garud R. Venkataraman S. 1999 The Innovation Journey Oxford University Press New York.

  • Walesiak M. Dudek A. 2017 The clusterSim package for R software

  • Walesiak M. Dudek A. Pełka M. 2018 The symbolicDA package for R software

  • Wojtas M. 2013 Innowacyjność polskiej gospodarki na tle krajów Unii Europejskiej Zeszyty Naukowe

  • Uniwersytetu Szczecińskiego nr 756 seria „Finanse Rynki Finansowe Ubezpieczenia” nr 57 pp. 605-617

Journal information
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 153 57 3
PDF Downloads 88 36 2