The Crossing Number of The Hexagonal Graph H3,n

Open access

Abstract

In [C. Thomassen, Tilings of the torus and the Klein bottle and vertex-transitive graphs on a fixed surface, Trans. Amer. Math. Soc. 323 (1991) 605–635], Thomassen described completely all (except finitely many) regular tilings of the torus S1 and the Klein bottle N2 into (3,6)-tilings, (4,4)-tilings and (6,3)-tilings. Many authors made great efforts to investigate the crossing number (in the plane) of the Cartesian product of an m-cycle and an n-cycle, which is a special (4,4)-tiling. For other tilings, there are quite rare results concerning on their crossing numbers. This motivates us in the paper to determine the crossing number of a hexagonal graph H3, n, which is a special kind of (3,6)-tilings.

[1] J. Adamsson and R.B. Richter, Arrangements, circular arrangements and the crossing number of C7 × Cn, J. Combin. Theory Ser. B 90 (2004) 21–39. doi:10.1016/j.jctb.2003.05.001

[2] L.W. Beineke and R.D. Ringeisen, On the crossing numbers of products of cycles and graphs of order four, J. Graph Theory 4 (1980) 145–155. doi:10.1002/jgt.3190040203

[3] D. Bokal, On the crossing numbers of Cartesian products with paths, J. Combin. Theory Ser. B 97 (2007) 381–384. doi:10.1016/j.jctb.2006.06.003

[4] D. Bokal, On the crossing numbers of Cartesian products with trees, J. Graph Theory 56 (2007) 287–300. doi:10.1002/jgt.20258

[5] J.A. Bondy and U.S.R. Murty, Graph Theory (Springer, New York, 2008).

[6] M.R. Garey and D.S. Johnson, Crossing number is NP-complete, SIAM J. Algebraic Discrete Methods 4 (1983) 312–316. doi:10.1137/0604033

[7] M. Klešč, R.B. Ritcher and I. Stobert, The crossing number of C5 × Cn, J. Graph Theory 22 (1996) 239–243. doi:10.1002/(SICI)1097-0118(199607)22:3⟨239::AID-JGT4⟩3.0.CO;2-N

[8] D.J. Ma, H. Ren and J.J. Lu, The crossing number of the circular graph C(2m + 2, m), Discrete Math. 304 (2005) 88–93. doi:10.1016/j.disc.2005.04.018

[9] T.H. Pak, The crossing number of C(3k + 1; {1, k}), Discrete Math. 307 (2007) 2771–2774. doi:10.1016/j.disc.2007.02.001

[10] R.B. Richter and G. Salazar, The crossing number of C6×Cn, Australas. J. Combin. 23 (2001) 135–143.

[11] R.B. Richter and J. Širáň, The crossing number of K3, n in a surface, J. Graph Theory 21 (1996) 51–54. doi:10.1002/(SICI)1097-0118(199601)21:1⟨51::AID-JGT7⟩3.0.CO;2-L

[12] R.D. Ringeisen and L.W. Beineke, The crossing number of C3 × Cn, J. Combin. Theory Ser. B 24 (1978) 134–136. doi:10.1016/0095-8956(78)90014-X

[13] C. Thomassen, Tilings of the torus and the Klein bottle and vertex-transitive graphs on a fixed surface, Trans. Amer. Math. Soc. 323 (1991) 605–635. doi:10.1090/S0002-9947-1991-1040045-3

[14] Y.S. Yang, X.H. Lin, J.G. Lu and X. Hao, The crossing number of C(n; {1, 3}), Discrete Math. 289 (2004) 107–118. doi:10.1016/j.disc.2004.08.014

Discussiones Mathematicae Graph Theory

The Journal of University of Zielona Góra

Journal Information


IMPACT FACTOR 2018: 0.741
5-year IMPACT FACTOR: 0.611



CiteScore 2018: 0.73

SCImago Journal Rank (SJR) 2018: 0.763
Source Normalized Impact per Paper (SNIP) 2018: 0.934

Mathematical Citation Quotient (MCQ) 2017: 0.36

Target Group

researchers in the fields of: colourings, partitions (general colourings), hereditary properties, independence and dominating structures (sets, paths, cycles, etc.), cycles, local properties, products of graphs

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 4375 4375 97
PDF Downloads 103 103 11