Equitable Colorings Of Corona Multiproducts Of Graphs

Open access

Abstract

A graph is equitably k-colorable if its vertices can be partitioned into k independent sets in such a way that the numbers of vertices in any two sets differ by at most one. The smallest k for which such a coloring exists is known as the equitable chromatic number of G and denoted by 𝜒=(G). It is known that the problem of computation of 𝜒=(G) is NP-hard in general and remains so for corona graphs. In this paper we consider the same model of coloring in the case of corona multiproducts of graphs. In particular, we obtain some results regarding the equitable chromatic number for the l-corona product G ◦l H, where G is an equitably 3- or 4-colorable graph and H is an r-partite graph, a cycle or a complete graph. Our proofs are mostly constructive in that they lead to polynomial algorithms for equitable coloring of such graph products provided that there is given an equitable coloring of G. Moreover, we confirm the Equitable Coloring Conjecture for corona products of such graphs. This paper extends the results from [H. Furmánczyk, K. Kaliraj, M. Kubale and V.J. Vivin, Equitable coloring of corona products of graphs, Adv. Appl. Discrete Math. 11 (2013) 103–120].

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] H.L. Bodleander and F.V. Fomin Equitable colorings of bounded treewidth graphs Theoret. Comput. Sci. 349 (2005) 22-30. doi:

    • Crossref
    • Export Citation
  • [2] B.L. Chen M.T. Ko and K.W. Lih Equitable and m-bounded coloring of split graphs in: Combinatorics and Computer Science Lecture Notes in Comput. Sci. 1120 (1996) 1-5. doi:

    • Crossref
    • Export Citation
  • [3] B.L. Chen K.W. Lih and P.L. Wu Equitable coloring and the maximum degree European J. Combin. 15 (1994) 443-447. doi:

    • Crossref
    • Export Citation
  • [4] R. Frucht and F. Harary On the corona of two graphs Aequationes Math. 4 (1970) 322-325. doi:

    • Crossref
    • Export Citation
  • [5] H. Furmánczyk Equitable coloring of graphs in: M. Kubale Ed. Graph Colorings (American Mathematical Society Providence Rhode Island 2004). doi:

    • Crossref
    • Export Citation
  • [6] H. Furmánczyk Equitable coloring of graph products Opuscula Math. 26 (2006) 31-44.

  • [7] H. Furmánczyk K. Kaliraj M. Kubale and V.J. Vivin Equitable coloring of corona products of graphs Adv. Appl. Discrete Math. 11 (2013) 103-120.

  • [8] H. Furmánczyk and M. Kubale Equitable coloring of corona products of cubic graphs is harder than ordinary coloring Ars Math. Contemp. 10 (2016) 333-347.

  • [9] H. Furmánczyk and M. Kubale Scheduling of unit-length jobs with cubic incompatibility graphs on three uniform machines Discrete Appl. Math. (2017) in press. doi:

    • Crossref
    • Export Citation
  • [10] A. Hajnal E. Szemeredi Proof of a conjecture of Erd¨os in: Combinatorial Theory and Its Applications II Colloq. Math. Soc. J´anos Bolyai 4 (North-Holland Amsterdam 1970).

  • [11] H.A. Kierstead A.V. Kostochka M. Mydlarz and E. Szemeredi A fast algorithm for equitable coloring Combinatorica 30 (2010) 217-224. doi:

    • Crossref
    • Export Citation
  • [12] K.W. Lih Equitable coloring of graphs in: Handbook of Combinatorial Optimization (Springer New York 2013) 1199-1248. doi:

    • Crossref
    • Export Citation
  • [13] K.W. Lih and P.L. Wu On equitable coloring of bipartite graphs Discrete Math. 151 (1996) 155-160. doi:

    • Crossref
    • Export Citation
  • [14] W.H. Lin and G.J. Chang Equitable colorings of Cartesian products of graphs Discrete Appl. Math. 160 (2012) 239-247. doi:

    • Crossref
    • Export Citation
  • [15] W. Meyer Equitable coloring Amer. Math. Monthly 80 (1973) 920-922. doi:

    • Crossref
    • Export Citation
  • [16] K. Nakprasit Equitable colorings of planar graphs with maximum degree at least nine Discrete Math. 312 (2012) 1019-1024. doi:

    • Crossref
    • Export Citation
  • [17] W. Wang and K. Zhang Equitable colorings of line graphs and complete r-partite graphs Systems Sci. Math. Sci. 13 (2000) 190-194.

  • [18] H.P. Yap and Y. Zhang The Equitable Δ-Coloring Conjecture holds for outerplanar graphs Bull. Inst. Math. Acad. Sin. 25 (1997) 143-149.

  • [19] H.P. Yap and Y. Zhang Equitable colorings of planar graphs J. Combin. Math. Combin. Comput. 27 (1998) 97-105.

  • [20] X. Zhang and J.-L. Wu On equitable and equitable list colorings of series-parallel graphs Discrete Math. 311 (2011) 800-803. doi:

    • Crossref
    • Export Citation
Search
Journal information
Impact Factor
IMPACT FACTOR 2018: 0.741
5-year IMPACT FACTOR: 0.611

CiteScore 2018: 0.73

SCImago Journal Rank (SJR) 2018: 0.763
Source Normalized Impact per Paper (SNIP) 2018: 0.934

Mathematical Citation Quotient (MCQ) 2017: 0.36

Target audience:

researchers in the fields of: colourings, partitions (general colourings), hereditary properties, independence and dominating structures (sets, paths, cycles, etc.), cycles, local properties, products of graphs

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 263 188 5
PDF Downloads 89 61 3