Domination, Eternal Domination, and Clique Covering

Open access

Abstract

Eternal and m-eternal domination are concerned with using mobile guards to protect a graph against infinite sequences of attacks at vertices. Eternal domination allows one guard to move per attack, whereas more than one guard may move per attack in the m-eternal domination model. Inequality chains consisting of the domination, eternal domination, m-eternal domination, independence, and clique covering numbers of graph are explored in this paper.

Among other results, we characterize bipartite and triangle-free graphs with domination and eternal domination numbers equal to two, trees with equal m-eternal domination and clique covering numbers, and two classes of graphs with equal domination, eternal domination and clique covering numbers.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] M. Anderson C. Barrientos R. Brigham J. Carrington R. Vitray and J. Yellen Maximum demand graphs for eternal security J. Combin. Math. Combin. Comput. 61 (2007) 111-128.

  • [2] B. Bollobás and E.J. Cockayne Graph-theoretic parameters concerning domination independence and irredundance J. Graph Theory 3 (1979) 241-249. doi:10.1002/jgt.3190030306

  • [3] A. Braga C.C. de Souza and O. Lee A note on the paper “Eternal security in graphs” by Goddard Hedetniemi and Hedetniemi (2005) J. Combin. Math. Combin. Comput. to appear.

  • [4] A.P. Burger E.J. Cockayne W.R. Gr¨undlingh C.M. Mynhardt J.H. van Vuuren and W. Winterbach Infinite order domination in graphs J. Combin. Math. Combin. Comput. 50 (2004) 179-194.

  • [5] W. Goddard S.M. Hedetniemi and S.T. Hedetniemi Eternal security in graphs J. Combin. Math. Combin. Comput. 52 (2005) 169-180.

  • [6] J. Goldwasser and W.F. Klostermeyer Tight bounds for eternal dominating sets in graphs Discrete Math. 308 (2008) 2589-2593. doi:10.1016/j.disc.2007.06.005

  • [7] J. Goldwasser W.F. Klostermeyer and C.M. Mynhardt Eternal protection in grid graphs Util. Math. 91 (2013) 47-64.

  • [8] T.W. Haynes S.T. Hedetniemi and P.J. Slater Fundamentals of Domination in Graphs (Marcel Dekker New York 1998).

  • [9] W. Klostermeyer and G. MacGillivray Eternally secure sets independence sets and cliques AKCE Int. J. Graphs Comb. 2 (2005) 119-122.

  • [10] W.F. Klostermeyer and G. MacGillivray Eternal security in graphs of fixed inde- pendence number J. Combin. Math. Combin. Comput. 63 (2007) 97-101.

  • [11] W.F. Klostermeyer and G. MacGillivray Eternal dominating sets in graphs J. Combin. Math. Combin. Comput. 68 (2009) 97-111.

  • [12] W.F. Klostermeyer and C.M. Mynhardt Vertex covers and eternal dominating sets Discrete Appl. Math. 160 (2012) 1183-1190. doi:10.1016/j.dam.2011.11.034

  • [13] W.F. Klostermeyer and C.M. Mynhardt Protecting a graph with mobile guards Movement on Networks Cambridge University Press (2014).

  • [14] G. Ravindra Well covered graphs J. Comb. Inf. Syst. Sci. 2 (1977) 20-21.

  • [15] F. Regan Dynamic Variants of Domination and Independence in Graphs Graduate Thesis Rheinischen Friedrich-Wilhlems University Bonn (2007).

Search
Journal information
Impact Factor
IMPACT FACTOR 2018: 0.741
5-year IMPACT FACTOR: 0.611

CiteScore 2018: 0.73

SCImago Journal Rank (SJR) 2018: 0.763
Source Normalized Impact per Paper (SNIP) 2018: 0.934

Mathematical Citation Quotient (MCQ) 2017: 0.36

Target audience:

researchers in the fields of: colourings, partitions (general colourings), hereditary properties, independence and dominating structures (sets, paths, cycles, etc.), cycles, local properties, products of graphs

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 204 130 1
PDF Downloads 89 62 1