Lattice-Like Total Perfect Codes

Open access

Abstract

A contribution is made to the classification of lattice-like total perfect codes in integer lattices Λn via pairs (G, Φ) formed by abelian groups G and homomorphisms Φ: Zn → G. A conjecture is posed that the cited contribution covers all possible cases. A related conjecture on the unfinished work on open problems on lattice-like perfect dominating sets in Λn with induced components that are parallel paths of length > 1 is posed as well.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] C. Araujo I.J. Dejter and P. Horak A generalization of Lee codes Des. Codes Cryptogr. online version (21 April 2012). doi:10.1007/s10623-012-9666-6

  • [2] D.W. Bange A.E. Barkauskas and P.J. Slater Efficient dominating sets in graphs Appl. Discrete Math. R.D. Ringeisen and F.S. Roberts Eds. SIAM Philadelphia (1988) 189-199.

  • [3] S.I. Costa M. Muniz E. Agustini and R. Palazzo Graphs tessellations and perfect codes on flat tori IEEE Trans. Inform. Theory 50 (2004) 2363-2377. doi:10.1109/TIT.2004.834754

  • [4] I.J. Dejter and A.A. Delgado Perfect domination in rectangular grid graphs J. Combin. Math. Combin. Comput. 70 (2009) 177-196.

  • [5] I.J. Dejter and O. Serra Efficient dominating sets in Cayley graphs Discrete Appl. Math. 119 (2003) 319-328. doi:10.1016/S0166-218X(02)00573-5

  • [6] I.J. Dejter and P. Weichsel Twisted perfect dominating subgraphs of hypercubes Congr. Numer. 94 (1993) 67-78.

  • [7] T. Etzion Product constructions for perfect Lee Codes IEEE Trans. Inform. Theory 57 (2011) 7473-7481. doi:10.1109/TIT.2011.2161133

  • [8] S. Golomb and K.Welch Perfect codes in Lee metric and the packing of polyominoes SIAM J. Appl. Math. 18 (1970) 302-317. doi:10.1137/0118025

  • [9] D. Hickerson and S. Stein Abelian groups and packings by semicrosses Pacific J. Math. 122 (1986) 96-109. doi:10.1137/0118025

  • [10] P. Horak and B.F. AlBdaiwi Non-periodic tilings of Rn by crosses Discrete Comput. Geom. 47 (2012) 1-16. doi:10.1007/s00454-011-9373-5

  • [11] P. Horak and B.F. AlBdaiwi Diameter perfect Lee codes IEEE Trans. Inform. Theory 58 (2012) 5490-5499. doi:10.1109/TIT.2012.2196257

  • [12] W.F. Klostermeyer and J.L. Goldwasser Total perfect codes in grid graphs Bull. Inst. Combin. Appl. 46 (2006) 61-68.

  • [13] J. Kratochvil and M. Kriv´anek On the computational complexity of codes in graphs in: Proc. MFCS 1988 LN Comp. Sci. 324 (Springer-Verlag) 396-404. doi:10.1007/BFb0017162

  • [14] E. Molnár Sui Mosaici dello spazio de dimensione n Atti Accad. Naz. Lincei Rend. Cl. Sci.Fis. Mat Nat. 51 (1971) 177-185.

  • [15] M. Schwartz Quasi-cross lattice tilings with applications to flash memory IEEE Trans. Inform. Theory 58 (2012) 2397-2405. doi:10.1109/TIT.2011.2176718

  • [16] S. Stein Packings of Rn by certain error spheres IEEE Trans. Inform. Theory 30 (1984) 356-363. doi:10.1109/TIT.1984.1056880

  • [17] S. Stein Factoring by subsets Pacific J. Math. 22 (1967) 523-541. doi:10.2140/pjm.1967.22.523

  • [18] S. Szabó On mosaics consisting of mutidimensional crosses Acta Math. Acad. Sci. Hung. 38 (1981) 191-203. doi:10.1007/BF01917533

  • [19] P.M. Weichsel Dominating sets of n-cubes J. Graph Theory 18 (1994) 479-488. doi:10.1002/jgt.3190180506

Search
Journal information
Impact Factor
IMPACT FACTOR 2018: 0.741
5-year IMPACT FACTOR: 0.611

CiteScore 2018: 0.73

SCImago Journal Rank (SJR) 2018: 0.763
Source Normalized Impact per Paper (SNIP) 2018: 0.934

Mathematical Citation Quotient (MCQ) 2017: 0.36

Target audience:

researchers in the fields of: colourings, partitions (general colourings), hereditary properties, independence and dominating structures (sets, paths, cycles, etc.), cycles, local properties, products of graphs

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 151 87 2
PDF Downloads 69 44 4