Topological Up-Algebras

Akarachai Satirad 1  and Aiyared Iampan 1
  • 1 Department of Mathematics, School of Science, 56000, Phayao, Thailand

Abstract

In this paper, we introduce the notion of topological UP-algebras and several types of subsets of topological UP-algebras, and prove the generalization of these subsets. We also introduce the notions of quotient topological spaces of topological UP-algebras and topological UP-homomorphisms. Furthermore, we study the relation between topological UP-algebras, Hausdor spaces, discrete spaces, and quotient topological spaces, and prove some properties of topological UP-algebras.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] S.S. Ahn and S.H. Kwon, Topological properties in BCC-algebras, Commun. Korean Math. Soc. 23 (2008) 169–178.

  • [2] R.A. Alo and E.Y. Deeba, Topologies of BCK-algebras, Math. Japonica 31 (1986) 841–853.

  • [3] M.A. Ansari, A. Haidar and A.N.A. Koam, On a graph associated to UP-algebras, Math. Comput. Appl. 23 (2018) 61. doi:10.3390/mca23040061

  • [4] N. Dokkhamdang, A. Kesorn and A. Iampan, Generalized fuzzy sets in UP-algebras, Ann. Fuzzy Math. Inform. 16 (2018) 171–190.

  • [5] W.A. Dudek, On BCC-algebras, Logique et Analyse 33 (1990) no. 129-130, 103–111.

  • [6] T. Guntasow, S. Sajak, A. Jomkham and A. Iampan, Fuzzy translations of a fuzzy set in UP-algebras, J. Indones. Math. Soc. 23 (2017) 1–19. doi:10.22342/jims.23.2.371

  • [7] C.S. Hoo, Topological MV-algebras, Topol. Appl. 81 (1997) 103–121. doi:10.1016/S0166-8641(97)00027-8

  • [8] Q.P. Hu and X. Li, On BCH-algebras, Math. Sem. Notes Kobe Univ. 11 (1983) 313–320.

  • [9] A. Iampan, A new branch of the logical algebra: UP-algebras, J. Algebra Relat. Top. 5 (2017) 35–54. doi:10.22124/JART.2017.2403

  • [10] A. Iampan, Introducing fully UP-semigroups, Discuss. Math. Gen. Algebra Appl. 38 (2018) 297–306. doi:10.7151/dmgaa.1290

  • [11] A. Iampan, The UP-isomorphism theorems for UP-algebras, Discuss. Math. Gen. Algebra Appl. 39 (2019) 113–123. doi:10.7151/dmgaa.1302

  • [12] Y. Imai and K. Iseki, On axiom systems of propositional calculi, XIV, Proc. Japan Acad. 42 (1966) 19–22. doi:10.3792/pja/1195522169

  • [13] K. Iseki, An algebra related with a propositional calculus, Proc. Japan Acad. 42 (1966) 26–29. doi:10.3792/pja/1195522171

  • [14] M. Jansi and V. Thiruveni, Topological structures on BCH-algebras, Int. J. Innov. Res. Sci. Eng. Technol. 6 (2017) 22594–22600. doi:10.15680/IJIRSET.2017.0612091

  • [15] Y.B. Jun, X.L. Xin, and D.S. Lee, On topological BCI-algebras, Inform. Sci. 116 (1999) 253–261. doi:10.1016/S0020-0255(99)00004-3

  • [16] H.S. Kim and Y.H. Kim, On BE-algebras, Sci. Math. Japon. 66 (2007) 113–116.

  • [17] T. Klinseesook, S. Bukok and A. Iampan, Rough set theory applied to UP-algebras, Manuscript accepted for publication in J. Inf. Optim. Sci., November 2018.

  • [18] D.S. Lee and D.N. Ryu, Notes on toplogical BCK-algebras, Sci. Math. 1 (1998) 231–235.

  • [19] S. Mehrshad and J. Golzarpoor, On topological BE-algebras, Math. Moravica 21 (2017) 1–13.

  • [20] S.A. Morris, Topology without tears. http://www.sidneymorris.net, 2019.

  • [21] C.C. Pinter, A Book of Set Theory, Dover Publications Inc. (United States, 2014).

  • [22] A. Satirad, P. Mosrijai and A. Iampan, Formulas for finding UP-algebras, Int. J. Math. Comput. Sci. 14 (2019) 403–409.

  • [23] A. Satirad, P. Mosrijai and A. Iampan, Generalized power UP-algebras, Int. J. Math. Comput. Sci. 14 (2019) 17–25.

  • [24] J. Somjanta, N. Thuekaew, P. Kumpeangkeaw and A. Iampan, Fuzzy sets in UP-algebras, Ann. Fuzzy Math. Inform. 12 (2016) 739–756.

OPEN ACCESS

Journal + Issues

Search