An Injective Pseudo-BCI Algebra is Trivial

Grzegorz Dymek 1
  • 1 Institute of Mathematics and Computer Science, 20–708, Lublin, Poland

Abstract

Injective pseudo-BCI algebras are studied. There is shown that the only injective pseudo-BCI algebra is the trivial one.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] D. Buşneag, Categories of algebraic logic, Editura Academiei Romane, Bucharest, 2006.

  • [2] W.A. Dudek and Y.B. Jun, Pseudo-BCI algebras, East Asian Math. J. 24 (2008) 187–190.

  • [3] G. Dymek, p-semisimple pseudo-BCI-algebras, J. Mult.-Valued Logic Soft Comput. 19 (2012) 461–474.

  • [4] G. Dymek, Atoms and ideals of pseudo-BCI-algebras, Comment. Math. 52 (2012) 73–90.

  • [5] G. Dymek, On the category of pseudo-BCI-algebras, Demonstratio Math. 46 (2013) 631-644.

  • [6] G. Dymek, On compatible deductive systems of pseudo-BCI-algebras, J. Mult.-Valued Logic Soft Comput. 22 (2014) 167–187.

  • [7] S. Eilenberg and J.C. Moore, Foundations of relative homological algebra, Mem. Amer. Math. Soc., Vol. 55, 1965.

  • [8] G. Georgescu and A. Iorgulescu, Pseudo-MV algebras: a noncommutative extension of MV-algebras, The Proceedings The Fourth International Symposium on Economic Informatics, INFOREC Printing House, Bucharest, Romania, May (1999), 961–968.

  • [9] G. Georgescu and A. Iorgulescu, Pseudo-BL algebras: a noncommutative extension of BL-algebras, Abstracts of The Fifth International Conference FSTA 2000, Slovakia, February 2000, 90–92.

  • [10] G. Georgescu and A. Iorgulescu, Pseudo-BCK algebras: an extension of BCK-algebras, Proceedings of DMTCS’01: Combinatorics, Computability and Logic, Springer, London, 2001, 97–114.

  • [11] Y. Imai and K. Iséki, On axiom systems of propositional calculi XIV, Proc. Japan Academy 42 (1966) 19–22. doi:10.3792/pja/1195522169

  • [12] K. Iséki, An algebra related with a propositional calculus, Proc. Japan Acad. 42 (1966) 26–29. doi:10.3792/pja/1195522171

OPEN ACCESS

Journal + Issues

Search