Introducing Fully Up-Semigroups

Open access

Abstract

In this paper, we introduce some new classes of algebras related to UP-algebras and semigroups, called a left UP-semigroup, a right UP-semigroup, a fully UP-semigroup, a left-left UP-semigroup, a right-left UP-semigroup, a left-right UP-semigroup, a right-right UP-semigroup, a fully-left UP-semigroup, a fully-right UP-semigroup, a left-fully UP-semigroup, a right-fully UP-semigroup, a fully-fully UP-semigroup, and find their examples.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] S.S. Ahn and Y.H. Kim On BE-semigroups Int. J. Math. Math. Sci. (2011) Article ID 676020 2011. doi:10.1155/2011/676020

  • [2] J.C. Endam and J.P. Vilela On JB-semigroups Appl. Math. Sci. 9 (2015) 2901–2911. doi:10.12988/ams.2015.46427

  • [3] A. Iampan A new branch of the logical algebra: UP-algebras J. Algebra Relat. Top. 5 (2017) 35–54. doi:10.22124/JART.2017.2403

  • [4] Y.B. Jun S.M. Hong and E.H. Roh BCI-semigroups Honam Math. J. 15 (1993) 59–64.

  • [5] Y.B. Jun E.H. Roh and X.L. Xin I-ideals generated by a set in IS-algebras Bull. Korean Math. Soc. 35 (1998) 615–624.

  • [6] Y.B. Jun X.L. Xin and E.H. Roh A class of algebras related to BCI-algebras and semigroups Soochow J. Math. 24 (1998) 309–321.

  • [7] F.F. Kareem and E.R. Hasan On KU-semigroups Int. J. Sci. Nat. 9 (2018) 79–84.

  • [8] K.H. Kim On structure of KS-semigroups Int. Math. Forum 1 (2006) 67–76.

  • [9] S.M. Lee and K.H. Kim A note on HS-algebras Int. Math. Forum 6 (2011) 1529–1534.

  • [10] J.K. Park W.H. Shim and E.H. Roh On isomorphism theorems in IS-algebras Soochow J. Math. 27 (2001) 153–160.

  • [11] F. Sultana and M.A. Chaudhary BCH-semigroup ideals in BCH-semigroups Palestine J. Math. 5 (2016) 1–5.

Search
Journal information
Impact Factor


Mathematical Citation Quotient (MCQ) 2018: 0.06

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 101 96 7
PDF Downloads 78 74 6