ESTIMATION OF BANKING EFFICIENCY IN THE CZECH REPUBLIC: DYNAMIC DATA ENVELOPMENT ANALYSIS

Open access

Abstract

This paper estimates the efficiency of Czech commercial banks during the period 2001 to 2011. We applied Dynamic Data Envelopment Analysis (DEA) to data from Czech commercial banks. The DEA measures the relative efficiency of a homogeneous set of decision-making units (DMUs) in their use of multiple inputs to produce multiple outputs. Dynamic Data Envelopment Analysis is a new approach which estimates the performance of a group of DMUs during several periods of time. The results of Dynamic DEA models showed that the average efficiency computed under the assumption of constant returns to scale reached a value of 86.7% and that the average efficiency estimated under the assumption of variable returns to scale was 95.7%. Efficiency slightly increased in the period analysed. The result of scale efficiency found that the main source of inefficiency is the inaccurate size of the biggest banks and also the excess client deposits managed by Czech banks.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Andries A. M. Cocris V. (2010). A Comparative Analysis of the Efficiency of Romanian Banks. Romanian Journal of Economic Forecasting 4 54-75.

  • Banker R. D. Charnes A. Cooper W.W. (1984). Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis. Management Science 30 1078-1092.

  • Bonin J. P. Hasan I. Wachtel P. (2005). Privatization matters: Bank efficiency in transition countries. Journal of Banking and Finance 29 2155-2178.

  • Charnes A. Cooper W.W. Lewin A.Y. Seiford L. M. (1995). Data Envelopment Analysis: Theory Methodology and Applications. New York: Springer-Verlag.

  • Charnes A. Cooper W.W. Rhodes E. (1978). Measuring the Efficiency of Decision Making Units. European Journal of Operational Research 2 429-444.

  • Costa E. M. Ramos F. S. Souza H. R. (2012). Static versus Dynamic DEA in Federal Higher Education Institutions - IFES. XVII Encontro Regional de Economia. ANPEC Regional Trabalho Completo.

  • Fare R. Grosskopf S. (1996). Intertemporal Production Frontiers: with Dynamic DEA.Norwell: Kluwer.

  • Farrell M. J. (1957). The Measurement of Productive Efficiency. Journal of the Royal Statistical Society (Series A) 120 2 253-281.

  • Fried H. O. Lovell C.A. K. (1994). Enhancing the Performance of Credit Unions: The Evolution of a Methodology. Recherches Economiques de Louvain 60 4 421-447.

  • Fries S. Taci A. (2005). Cost Efficiency of Banks in Transition: Evidence from 289Banks in 15 Post-communist Countries. Journal of Banking and Finance 29 55-81.

  • Jablonský J. (2012). Data envelopment analysis models with network structure. In Ramík J. Stavárek D. (eds.) Proceedings of the 30th International Conference Mathematical Methods in Economics 2012. Karviná: Silesian University School of Business Administration.

  • Kamecka M. (2010). Bank efficiency in CEE. Doctoral thesis. Vienna: WU Vienna University of Economics and Business.

  • Kawaguchi H. Tone K. Tsutsui M. (2013). Estimation of the Efficiency of Japanese Hospitals Using a Dynamic and Network Data Envelopment Analysis Model. In Proceedings ofWorkshop 2013 on Dynamic and Network DEA. Tokio:National Graduate Institute for Policy Studies.

  • Lotfi F. H. Poursakhi N. (2012). A Mathematical Model for Dynamic Efficiency Using Desirable and Undesirable Input-Output. Applied Mathematical Sciences 6 141-151.

  • Malmquist S. (1953). Index numbers and indifference surfaces. Trabajos de Estadistica 4 209-242.

  • Matoušek R. Taci A. (2005). Efficiency in Banking: Empirical Evidence from the Czech Republic. Economic Change and Restructuring 37 225-244.

  • Otýpková M. (2012). Financní stabilta CR v podmínkách soucasného ekonomického systému. Acta academica karviniensia 3 77-88.

  • Sathy M. (2003). Efficiency of Banks in a Developing Economy: The Case of India.European Journal of Operational Research 148 662-671.

  • Seiford L. M. Thrall R. M. (1990). Recent developments in DEA: the mathematical programming approach to frontier analysis. Journal of Econometrics 46 7-38.

  • Sengupta J. K. (1996). Systematic measures of dynamic Farrell Efficiency. Applied Economics Letters 3 91-94.

  • Stanek R. (2010). Efektivnost ceského bankovního sektoru v letech 2000-2009. In Konkurenceschopnost a stabilita. Brno: Masaryk University.

  • Stanícková M. Skokan K. (2012). Evaluation of Visegrad Countries Efficiency in Comparison with Austria and Germany by Selected Data Envelopment Analysis Models. In Proceedings of the 4th WSEAS World Multiconference on Applied Economics Business and Development (AEBD ’12). Recent Researches in Business and Economics. Porto: WSEAS.

  • Stavárek D. (2005). Restrukturalizace bankovních sektoru a efektivnost bank v zemích Visegrádské skupiny. Karviná: Silesian University School of Business Administration.

  • Stavárek D. Poloucek S. (2004). Efficiency and Profitability in the Banking Sector.In Poloucek S. (ed.) Reforming the Financial Sector in Central European Countries.Hampshire: Palgrave Macmillan Publishers.

  • Stavárek D. Repková I. (2012). Efficieny in the Czech banking industry: A nonparametric approach. Acta Universitatis Agriculturae et Silviculturae Mendeleianae Brunensis 60 357-366.

  • Sufian F. (2007). The Efficiency of Islamic Banking Industry: a non-parametric analysis with non-discretionary input variable. Islamic Economic Studies 14 1-2 53-78.

  • Taci A. Zampieri E. (1998). Efficiency in the Czech Banking Sector. CERGE-EI Discussion Paper 4 Prague: CERGE-EI.

  • Tone K. (2001). A slacks-based measure of efficiency in data envelopment analysis.European Journal of Operational Research 130 498-509.

  • Tone K. Tsutsui M. (2010). Dynamic DEA: A slacks-based measure approach. Omega 38 145-156.

  • Weill L. (2003). Banking efficiency in transition economies: The role of foreign ownership.Economics of Transition 11 569-592.

Search
Journal information
Impact Factor


CiteScore 2018: 0.5

SCImago Journal Rank (SJR) 2018: 0.24
Source Normalized Impact per Paper (SNIP) 2018: 0.276

Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 292 98 8
PDF Downloads 150 69 11