Corrosion Properties Of 1.4512 Ferritic And 1.4404 Austenitic Steels For The Automotive Industry

Viera Zatkalíková 1 , Lenka Markovičová 1  and Anna Wróbel-Knysak 2
  • 1 University of Žilina, Slovakia,
  • 2 Kielce University of Technology, Poland


Exhaust systems are susceptible to in-service wear because of their exposition to the very aggressive corrosive environment. Various stainless steels grades (mostly ferritic and austenitic, but also martensitic and duplex) and protective coatings are currently used for exhaust system elements to increase their aestetics and corrosion resistance. This article focuses on evaluation and comparison of the common corrosion properties of two stainless steels with different microstructures (ferritic and austenitic) used for exhaust system components at the low ambient temperature (35 °C). An aggressive acidic corrosion solution for electrochemical cyclic potentiodynamic tests (ASTM G61) was chosen to simulate partly inner (condensate) and also external environment (reaction of exhaust gases with water, chlorides in solution after winter road maintenance). Exposure tests of the pitting corrosion resistance were performed according to ASTM G48 standard method.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Adamczyk, J., 2004. Inżyniera materiałów metalowych. część 2. Wyd. Politechniki Śląskiej, Gliwice (in Polish).

  • Bala, H., 2002. Korozja materiałów – teoria i praktyka. Prace Dydaktyczne Wydziału Inżynierii Procesowej, Materiałowej i Fizyki Stosowanej, Seria: Inżynieria Materiałowa, Nr 5, Wyd. Politechniki Częstochowskiej, Częstochowa (in Polish).

  • Hadzima, B., Liptáková, T., 2008. Základy elektrochemickej korózie kovov (Fundamentals of electrochemical corrosion of metals). EDIS - Žilinská univerzita, Žilina (in Slovak).

  • Han, P.H., Xu, Z.H., Wang, C.P., Li, M.C., Bi, H.Y., 2014. Condensate corrosion behavior of type 409 stainless steel in simulated automotive muffler environments. International Journal of Elektrochemical Science 9, 3784–3794.

  • Inoue, Y., Kikuchi, M. 2003. Present and Future Trends of Stainless Steel for Automotive Exhaust System. Nippon Steel Technical Report 88,

  • Lukaszkowicz, K., 2014. Coatings for transport industry. Transport Problems, 9, 3, 15-20.

  • PN EN-ISO 643:2013-06 Steel - Micrographic definition of grain size.

  • PN-EN 10088-2:2014-12 Corrosion resistant steel - Part 2: Technical conditions for the delivery of thin / thick sheets and stainless steel, general application

  • Rajadurai, S., Afnas, M., Ananth, S., Surendhar, S., 2014. Materials for automotive exhaust system. International Journal of Recent Development in Engineering and Technology, 2, 3, 82-89.

  • Szklarska – Smialowska, Z., 2005. Pitting and crevice corrosion. NACE International, Houston, Texas.

  • Uhríčik, M., Sapieta, M., Stankovičová, Z., Palček, P., Oravcová, M., 2016. The stress detection of stainless steel AISI 304, AISI 316L and AISI 316Ti during three-point bending cyclic loading. Materials Today proceedings 3, 4, on-line, 1189-1194.

  • Wróbel-Knysak, A., 2012. Increasing service life of Al-Si protective coatings used in the automotive industry. (PhD thesis, in Polish), Politechnika Częstochowska.

  • Wróbel-Knysak, A., Radziszewski, L., 2016. Condition of Al-Si protective coating of automotive exhaust systems after dip&dry corrosion test. In: 33rd Interntional Colloqium, May 25-27 2016, Western Tatras – Zuberec, Slovakia, 116-119.

  • Wróbel, A., Kucharska, B., 2011. Materiały na elementy samochodowych układów wydechowych – dawniej i dziś. In: Materiały Konferencyjne nr 15, XII Międzynarodowej Konferencji Naukowej, Nowe Technologie i Osiągnięcia w Metalurgii i Inżynierii Materiałowej, Politechnika Częstochowska, 533-537 (in Polish).

  • Zatkalíková, V., Markovičová, L., Belan, J., Liptáková, T., 2014. Variability of local corrosion attack morphology of AISI 316Ti stainless steel in aggressive chloride environment. Manufacturing Technology, 14, 3, 493-497.

  • (accessed 12.4. 2018).


Journal + Issues