Influence of the Environment on the Operational Safety of a Fluidized Bed Boiler

Open access

Abstract

The use of fluidized bed boilers in modern power engineering is a promising solution for clean and economically acceptable combustion of various fuels, including coal, biomass and waste, for the generation of electricity. The fluidized bed boilers are nowadays technically advanced and complex combustion facilities where all individual boiler elements are subjected to withstand continuous structural and thermal loads during their operation. Intensive loading of boiler elements can be quite easily linked with boiler operational safety and is quite often one of the main reasons for emergency shutdowns followed by necessary replacements of the damaged items. In case of industrial large-scale circulating fluidized bed boilers the frequency of unplanned shutdowns is also quite often affected by the hydrodynamics of the fluidized bed and some other parameters, such as the intensity of solids circulation, temperature, solids concentration, flue gas composition and velocity, solids accumulation and deposition, as well as the corrosion or erosion of heat transfer surfaces. The present paper briefly reports the results of authors investigation focused on the morphology and structure of some chosen elements (steel anchors) sampled from one of Polish circulating fluidized bed boilers. The anchors were degraded during boiler operation and lost their mechanical durability. In order to determine the reasons of anchors’ degradation chemical composition of the elements was determined with the use of a spark spectrometer SPECTROLAB and sample morphology was investigated with JEOL JSM-6610LV scanning microscope equipped with LaB6 cathode.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Demirbas M.F. Balat M. Balat H. 2009. Potential contribution of biomass to the sustainable energy development. Energy Conv. Manag. 50(7) 1746-1760. DOI: 10.1016/j.enconman.2009.03.013

  • Domagala M. Momeni H. Domagala-Fabis J. Filo G. Krawczyk M. 2018b Simulation of Particle Erosion in a Hydraulic Valve. Mater. Res. Proc. 5 17-24. DOI: 10.21741/9781945291814-4

  • Guidoni G. Dudek A. Patsias S. Anglada M. 2005. Fracture behaviour of thermal barrier coatings after high temperature exposure in air. Mat. Sci. Eng. A-Struct. 397 209-214.

  • Korzekwa J. Gadek-Moszczak A. Zubko M. 2018. Influence of the Size of Nanoparticles on the Microstructure of Oxide Coatings. Mater. Sci. 53 709-716. DOI: 10.1007/s11003-018-0127-x

  • Kozien E. Kozien M.S. 2017. Interval analysis as a method of measurement of uncertainity in the check-list method applied to identification of stage phase of companies. 26th Int. Sci. Conf. Economic and Social Development – Building Resilient Society: Economic and Social Development. Varazdin Development & Entrepreneurship Agency Varazdin Croatia 210-215.

  • Leckner B. Szentannai P. Winter F. 2011. Scale-up of fluidized-bed combustion-a review. Fuel 90(10) 2951-2964. DOI: 10.1016/j.fuel.2011.04.038

  • Maszke A. Dwornicka R. Ulewicz R. 2018 Problems in the implementation of the lean concept at a steel works – Case study. MATEC Web Conf. 183 art. 01014. DOI: 10.1051/matecconf/201818301014

  • Mazur M. Kucharikova L. Tillova E. Chalupova M. 2018. A change of mechanical properties of the self-hardening UNIFONT 90 due to temperature. Mater. Res. Proc. 5 136-141. DOI: 10.21741/9781945291814-24

  • Mazur M. Mikova K. 2016. Impact resistance of high strength steels. Mater. Today-Proc. 3 1060-1063. DOI: 10.1016/j.matpr.2016.03.048

  • Nowakowska-Grunt J. Mazur M. 2015. Safety management in logistic processes of the metallurgical industry. METAL 2015: 24th Int. Conf. Metallurgy And Materials Ostrava Tanger 2020-2025.

  • Nowakowska-Grunt J. Mazur M. 2016. Effectiveness of logistics processes of SMES in the metal industry. METAL 2016: 25th Int. Conf. Metallurgy And Materials Ostrava Tanger 1956-1961.

  • Osocha P. Duda P. Weglowski B. 2004. Determining temperature and stress changes in thick-walled elements of steam lines. Inz. Chem. Procesowa 25 2249-2256.

  • Osocha P. 2018. Calculation of Residual Life for P91 Material Based on Creep Rate and Time to Rupture. Mater. Res. Proc. 5 177-182. DOI: 10.21741/9781945291814-31

  • Pietraszek J. Dwornicka R. Krawczyk M. Kołomycki M. 2017. The non-parametric approach to the quantification of the uncertainty in the design of experiments modelling. UNCECOMP 2017 NTU of Athens 598-604. DOI: 10.7712/120217.5395.17225

  • Pliszka I. Radek N. Gadek-Moszczak A. Fabian P. Paraska O. 2018. Surface improvement by WC-Cu electro-spark coatings with laser modification. Mater. Res. Proc. 5 237-242. DOI: 10.21741/9781945291814-42

  • Pobedza J. Sobczyk A. 2013. Modern Coating Used in High Pressure Water Hydraulic Components. Key Engineering Materials 542 143-155. DOI: 10.4028/www.scientific.net/KEM.542.143

  • Radek N. Bartkowiak K. 2011. Laser Treatment of Cu-Mo Electro-Spark Deposited Coatings. Physcs. Proc. 12 499-505. DOI: 10.1016/j.phpro.2011.03.061

  • Radek N. Szczotok A. Gadek-Moszczak A. Dwornicka R. Broncek J. Pietraszek J. 2018a. The impact of laser processing parameters on the properties of electro-spark deposited coatings. Arch. Metall. Mater. 63 809-816. DOI: 10.24425/122407

  • Radek N. Pietraszek J. Szczotok A. 2018b. Microstructure and tribological properties of esd coatings after laser processing. Mater. Res. Proc. 5 206-209. DOI: 10.21741/9781945291814-36

  • Scendo M. Trela J. Radek N. 2014. Influence of laser power on the corrosive resistance of WC-Cu coating. Surf. Coat. Tech. 259 401-407. DOI: 10.1016/j.surfcoat.2014.10.062

  • Shrestha S. Ali B.S. Binti Hamid M.D. 2016. Cold flow model of dual fluidized bed: A review. Renew. Sust. Energ. Rev. 53 1529-1548. DOI: 10.1016/j.rser.2015.09.034

  • Szabracki P. Lipinski T. 2014a. Influence of sigma phase precipitation on the intergranular corrosion resistance of X2CrNiMoN25-7-4 super duplex stainless steel. Metal 2014: 23rd Int. Conf. Metallurgy and Materials. Tanger Ostrava 476-481.

  • Szabracki P. Lipinski T. 2014b. Effect of Aging on the Microstructure and the Intergranular Corrosion Resistance of X2CrNiMoN25-7-4 Duplex Stainless Steel. Solid State Phenom. 203-204 59-62. DOI: 10.4028/www.scientific.net/SSP.203-204.59

  • Szczotok A. Rodak K. 2012. Microstructural studies of carbides in MAR-M247 nickel-based superalloy. Conf. Technologies and Properties of Modern Utilised Materials IOP vol. 35 art. 012006. DOI: 10.1088/1757-899X/35/1/012006

  • Szczotok A. Chmiela B. 2014. Effect of Heat Treatment on Chemical Segregation in CMSX-4 Nickel-Base Superalloy. J. Mater. Eng. Perform. 23 2739-2747. DOI: 10.1007/s11665-013-0843-1

  • Weglowski B. Osocha P. 2009. Modelling of creep for Y pipe from ferriticmartensitic P91 steel. Rynek Energii 6 140-145.

  • Wlodarczyk R. Dudek A. Nitkiewicz Z. 2011. Corrosion analysis of sintered material used for low-temperature fuel cell plates. Arch. Metall. Mater. 56 181-186. DOI: 10.2478/v10172-011-0021-0

  • Ud Din Z. Zainal Z.A. 2016. Biomass integrated gasification-SOFC systems: Technology overview. Renew. Sust. Energ. Rev. 53 1356-1376. DOI: 10.1016/j.rser.2015.09.013

  • Yu L.-J. Cao G.-Y. Zhu X.-J. Jiang A.-Z. Tian Z.-P. 2003. Study on an environmental-friendly and high-efficient fuel cell energy conversion system. J. Environ. Sci. 15(1) 97-101.

Search
Journal information
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 120 120 8
PDF Downloads 84 84 3