The Application of Business Intelligence Systems in Logistics. Review of Selected Practical Examples

Open access

Abstract

The goal of the paper is to present the application of Business Intelligence systems belonging to the area of business analytics in the domain of logistics and particularly indicate its role and meaning in supporting logistics decision making processes. Its content embraces the characteristic of BI systems, its functionality, construction and benefits resulting from its implementation. The paper also presents review of research and case studies connected to the BI usage in such areas of logistics as optimization of supply chain, managerial dashboard design and improvement of business processes.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Baars H. Kemper H.G. Lasi H. Siegel M. 2008. Combining RFID Technology and Business Intelligence for Supply Chain Optimization – Scenarios for Retail Logistics. In: Proceedings of the 41st Hawaii International Conference on System Sciences – 2008.

  • Brzozowska A. Sałek A. Sałek R. Ziora L. 2016. The Possibilities of Big Data Solutions Application in Logistics. In: XXX. microCAD International Multidisciplinary Scientific Conference University of Miskolc Miskolc Hungary 2016.

  • Cerasis: The Most Impactful Supply Chain & Logistics Trends in 2017. https://cerasis.com/wp-content/uploads/2017/02/The-Most-Impactful-Supply-Chain_Logistics-Trends-in-2017-eBook.pdf.

  • Clavier P. 2016. Understanding Business Intelligence Understanding: Through Goods- and Service-Dominant Logic Lenses. The Electronic Journal of Knowledge Management 14 2 103-115 (available online at www.ejkm.com).

  • Dowse S. Why Supply Chains Need Business Intelligence: http://www.predictiveanalyticsworld.com/patimes/why-supply-chains-need-business-intelligence/2600. (Retrieved 12.09.2018).

  • Dziembek D. Ziora L. 2014. Business intelligence systems in the SaaS model as a tool supporting knowledge acquisition in the virtual organization. Online Journal of Applied Knowledge Management 2 2 82-96.

  • Globonix Case Study: CF Industries – Supply Chain BIhttp://globonix.com/home/case-study-cf-industries-supply-chain/ (Retrieved 15.11.2018).

  • Hajdul M. 2014. Virtual co-opetition in transport - T-Scale platform case study. Procedia - Social and Behavioral Sciences. 111 761 – 769.

  • Hanus P. Zowada K. 2015. Narzędzia IT w logistycznych procesach decyzyjnych małych i średnich przedsiębiorstw. In: Witkowski J. Skowrońska A. Prace Naukowe UE Wrocław 382 Ed. UE Wrocław 290-304.

  • Kerdprasop N. Kongchai P. Kerdprasop K. 2013. Constraint Mining in Business Intelligence: A Case Study of Customer Churn Prediction. International Journal of Multimedia and Ubiquitous Engineering 8 3.

  • Nwaubani J. Business Intelligence and Logistics. In: Proceedings of the 1st Olympus International Conference on Supply Chains Katerini Greece www.teicm.gr.

  • Olariu I. (2014) Decision making strategies regarding logistics organization Studies and Scientific Researches. Economics Edition No 19 2014 (available online at http://sceco.ub.ro).

  • Olexova C. (2014) Business intelligence adoption: a case study in the retail chain. WSEAS Transactions on Business and Economics. Volume 11 2014 E-ISSN: 2224-2899.

  • Olszak C. Ziemba E. 2006. Business Intelligence Systems in the Holistic Infrastructure Development Supporting Decision-Making in Organisations. Interdisciplinary Journal of Information Knowledge and Management 1 (available online at http://ijikm.org/Volume1/IJIKMv1p047-058Olszak19.pdf).

  • Olszak C. Ziemba E. 2012. Critical Success Factors for Implementing Business Intelligence Systems in Small and Medium Enterprises on the Example of Upper Silesia Poland. Interdisciplinary Journal of Information Knowledge and Management 7 (available online at http://www.ijikm.org/Volume7/IJIKMv7p129-150Olszak634.pdf).

  • Partridge A.R. Business Intelligence in the Supply Chain. http://www.inboundlogistics.com/cms/article/business-intelligence-in-the-supply-chain/ (Retrieved 11.10.2017).

  • Peto M. The Decision Making Systems Model for Logistics. http://www.pefka.mendelu.cz/predmety/simul/PEFnet13/prispevky/Peto.pdf (Retrieved 11.10.2017).

  • Presthus W. Canales C. 2015. Business Intelligence Dashboard Design. A case study of a large Logistics company. (available online at http://ojs.bibsys.no/index.php/Nokobit/article/view/261/225).

  • Radivojević G.M. Šormaz G.R. Lazić B.S. 2013. BI applications in Logistics. In: 1st Logistics International Conference Belgrade Serbia 28 - 30 November.

  • Sahay B.S Ranjan J. 2008. Real time business intelligence in supply chain analytics. Information Management & Computer Security 16 1 28-48.

  • Senthil S Srirangacharyulub B. Ramesh A. 2012. A decision making methodology for the selection of reverse logistics operating channels. In: International Conference on Modeling Optimization and Computing. Procedia Engineering 38 418 – 428.

  • Srinivasa R.P. Saurabh S. Business Intelligence and Logistics White paper. (available online at www.wipro.co.in).

  • Tan P.S. Leeb S. S. G. Goh A.E.S 2012. Multi-criteria decision techniques for context-aware B2B collaboration in supply chains. Decision Support Systems. 52 779–789 (available online at www.elsevier.com/locate/dss).

  • Transportation Busines Intelligence: http://cerasis.com/transportation-technology/transportation-business-intelligence/ (Retrieved 15.11.2017).

  • Williams S. Williams N. 2007. The Profit Impact of Business Intelligence. Morgan Kaufman Elsevier New York.

  • Vatovec Krmac E. 2011. Intelligent Value Chain Networks: Business Intelligence and Other ICT Tools and Technologies in Supply/Demand Chains decisions (available online at www.intechopen.com) DOI: 10.5772/18850.

  • Ziora L. 2016. The Applicability of Business Intelligence Systems in the Support of Managerial Decisions in the International Enterprises. International Journal of Economics and Statistics 4 131-135.

  • Zowada K. 2013. Decyzje logistyczne w sektorze MSP – wyniki badań. Logistyka 5 229-231.

Search
Journal information
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 297 297 15
PDF Downloads 224 224 36