Measurement Method of the Width of the Strands of Cut Tobacco Based on Digital Image Processing

Open access

Summary

The width of cut tobacco strands is an important indicator for physical parameters as well as for the smoking quality. In some countries, cut width helps to distinguish fine-cut tobacco and pipe tobacco and thus differentiates taxation rate. A new method for rapid measurement of the width of cut tobacco strands was developed based on digital image processing, because the method described in ISO 20193, though easy to implement in factories, proved time consuming and generated high testing costs. The essence of this method is to determine the statistic width of incisions. The straight-line segments represent the width of strands of cut tobacco, from which the determination of the width for randomly placed tobacco strands could be achieved. Five kinds of samples (‘ISO collaborative study samples 0.4 mm, 1.0 mm, 1.6 mm and 3.0 mm’ and ‘Guangdong baked 0.9 mm’) were used to study the comparability of the measurement results between the method presented in this work and the current ISO method. Results show that accuracy and repeatability are comparable. In addition, the testing efficiency of the method presented in this work appears to be higher than the current ISO method, and it is thus a promising alternative method for measuring the width of strands of cut tobacco.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Zhang H.L.: Effect of Width of Cut Lamina on Tar of Cigarette Smoke; Tob. Sci. Technol. (1996) 5–7. DOI: 10.16135/j.issn1002-0861.1996.05.002

  • 2. Yang Y. H. Gao H. Wang Z. Liu Y.Z. Wang H.J. Lin Y.X. Cui and Y.K. Hua: Effects of Combination of Different Width Cut Tobacco on Cigarette Physical Indexes and its Comprehensive Stability; J. Yunnan Agric. Univ. 32 (2017) 488–497.

  • 3. Yao G.M. W.H. Wang X.Z. Yin S.H. Li and Q. Li: Effect of the Size Proportion of Cut Tobacco on the Filling Power of Cut Tobacco and Cigarette Making Quality; J. Zhengzhou Inst. Light Ind. (Nat. Sci.) 18 (2003) 62–64.

  • 4. International Organisation of Standardization (ISO): ISO 20193:2012 — Analysis of Tobacco and Tobacco Products — Determination of the Width of the Strands of Cut Tobacco; ISO Geneva Switzerland 2012. Available at: https://www.iso.org/standard/52696.html (accessed July 2019)

  • 5. Lu Y. T.Q. Chen J. Chen J. Zhang and A. Tisler: Machine Vision Systems Using Machine Learning for Industrial Product Inspection; Proceedings of SPIE – The International Society for Optical Engineering 4567 (2001) 161–170. DOI: 10.1117/12.455253

  • 6. Lahanjar F. R. Bernard F. Pernuš and S. Kovačič: Machine Vision System for Inspecting Electric Plates; Comput. Ind. 47 (2002) 113–122. DOI: 10.1016/S0166-3615(01)00134-8

  • 7. Zhang Z.: A Flexible New Technique for Camera Calibration; IEEE Trans. Pattern Anal. Mach. Intell. 22 (2000) 1330–1334. DOI: 10.1109/34.888718

  • 8. Kannala J. and S.S. Brandt: A Generic Camera Model and Calibration Method for Conventional Wide-Angle and Fish-Eye Lenses; IEEE Trans. Pattern Anal. Mach. Intell. 28 (2006) 1335–1340. DOI: 10.1109/TPAMI.2006.153

  • 9. Mayer A. and H. Greenspan: An Adaptive Mean-Shift Framework for MRI Brain Segmentation; IEEE Trans. Med. Imaging 28 (2009) 1238–1250. DOI: 10.1109/TMI.2009.2013850

  • 10. Duda R.O. and P. E. Hart: Use of the Hough Transformation to Detect Lines and Curves in Pictures; Commun. ACM 15 (1972) 11–15. Available at: https://www.cse.unr.edu/~bebis/CS474/Handouts/HoughTransformPaper.pdf (accessed July 2019)

  • 11. Xia Y.W. Q. Feng Y. Zhao L. Xiang Z. Zhu Y. Liu J. Liu L. Zhang J. Zhao Q. Zhong H. Yi and R. Du: Method for Measuring Width of Tobacco Shred Based on Computer Vision; Tob. Sci. Technol. 9 (2014) 10–14. DOI: 10.3969/j.issn.1002-0861.2014.09.002

  • 12. Goshtasby A.: Correction of Image Deformation From Lens Distortion Using Bezier Patches; Comput. Vision Graph. 47 (1989) 385–394. DOI: 10.1016/0734-189X(89)90120-5

  • 13. Brown D.C.: Close Range Camera Calibration; Photo-gramm. Eng. 37 (1971) 855–866.

  • 14. Gharib M. and S. Ghani: Free Vibration Analysis of Linear Particle Chain Impact Damper; J. Sound Vib. 332 (2013) 6254–6264. DOI: 10.1016/j.jsv.2013.07.013

  • 15. Eldahshan K. M. Youssef E. Masameer and M.A. Mustafa: Comparison of Segmentation Framework on Digital Microscope Images for Acute Lymphoblastic Leukemia Diagnosis Using RGB and HSV Color Spaces; Biotechnol. Bioeng. 2 (2015) 27–34. DOI: 10.5120/15590-4426

  • 16. Joshi M.D. A.H. Karode and S.R. Suralkar: White Blood Cells Segmentation and Classification to Detect Acute Leukemia; Int. J. Emerg. Trends Technol. Comput. Sci. 2 (2013) 147–151. Available at: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.387.699&rep=rep1&type=pdf (accessed August 2019)

  • 17. Cheng Y.Z.: Mean Shift Mode Seeking and Clustering; IEEE Transactions on Pattern Analysis and Machine Intelligence 17 (1995) 790–799. DOI: 10.1109/34.400568

  • 18. Zhang Y.C. H. Guo F. Chen and H. Yang: Weighted Kernel Mapping Model With Spring Simulation Based Watershed Transformation for Level Set Image Segmentation; Neurocomputing 249 (2017) 1–18. DOI: 10.1016/j.neucom.2017.01.044

  • 19. Strang G.: Linear Algebra and its Applications; 3rd edition Harcourt Brace Jovanovic San Diego CA USA 1988. ISBN-13: 978-0155510050

  • 20. Rosenfeld A. and J.L. Pfaltz: Sequential Operations in Digital Picture Processing; JACM 13 (1966) 471–494. DOI: 10.1145/321356.321357

  • 21. Bhattacharya P.: Connected Component Labeling for Binary Images on Reconfigurable Mesh Architectures; J. Syst. Architect. 42 (1996) 309–313. DOI: 10.1016/1383-7621(96)00027-6

  • 22. Samet H.: Connected Component Labeling Using Quadtrees; JACM 28 (1981) 487–501. Available at: https://www.cs.umd.edu/users/hjs/pubs/SametJACM81.pdf (accessed July 2019)

  • 23. He X.G. J. Tian L.F. Wu and Y.Y: Zhang: Illumination Normalization with Morphological Quotient Image; J. Softw. 18 (2007) 2318–2325. DOI: 10.1360/jos182318

  • 24. Li X.F. D.W. Ma and Y.J. Nian: The Research on Algorithm of Image’s Erosion and Dilation; Image Technol. 01 (2005) 37–39. DOI: 10.3969/j.issn.1001-0270.2005.01.009

  • 25. Cheng J. Q. Liu and H. Lu: Texture Classification Using Kernel Independent Component Analysis; Proceedings of the 17th International Conference on Pattern Recognition 1 (2004) 23–26. DOI: 10.1109/ICPR.2004.1334231

  • 26. Liu X.W. and L. Cheng: Independent Filters for Texture Classification; Proceedings of IEEE International Conference on Image Processing 3 (2002) 24–28. DOI: 10.1109/ICIP.2002.1038917

  • 27. Liu X. and L. Cheng: Independent Spectral Representations of Images for Recognition; J. Opt. Soc. Am. A 20 (2003) 1271–1282. DOI: 10.1364/JOSAA.20.001271

Search
Journal information
Impact Factor


CiteScore 2018: 0.69

SCImago Journal Rank (SJR) 2018: 0.295
Source Normalized Impact per Paper (SNIP) 2018: 0.491

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 75 75 21
PDF Downloads 46 46 15