Open Access

Use of Several Natural Products from Selected Nicotiana Species to Prevent Black Shank Disease in Tobacco


Cite

Black shank is a major annual disease threat to all types of tobacco worldwide. It is caused by the fungus Phytophthora parasitica var. nicotianae (PPN). The major tobacco growing areas in US - Kentucky, Tennessee and North Carolina can experience devastating losses, reaching in some fields up to 100%. Thus far, the main approaches to control this disease have been creation of resistant varieties, fungicide treatments, and crop rotation. Some fungicides are reported to have negative effects on the environment. The goal of this work was to test the antifungal activity of several natural products that are synthesized by certain Nicotiana species, and secreted to the leaf surface. We hypothesized that phylloplanin, cis-abienol, labdenediol and sclareol can suppress PPN-race 0- and PPN-race 1-caused disease in Burley tobaccos KY 14 and MS KY 14 × L8LC in the greenhouse. We developed methods for leaf surface extraction, spore preparation and soil drench application of the natural compounds tested. Experiments were performed on 5–8 week-old greenhouse grown seedlings. cis-Abienol showed high inhibitory properties toward the disease. Race 0 infection was completely subdued in KY 14 while race 1 infection was reduced by 70–80%, and delayed by 6–10 days in KY 14 and MS KY14 × L8LC. Sclareol was very effective in inhibiting race 0-caused disease in both tobacco cultivars. In MS KY 14 × L8LC race 1 infection was inhibited while in KY 14 it was reduced by 85% and delayed by 6 days. Labdenediol reduced the disease by half in eight week-old KY 14 plants. Tobacco phylloplanin reduced plant infection by both races by 50–60% and delayed the disease by 6–10 days. Phylloplanin was least suppressive in both tobacco cultivars. We consider sclareol to be the best candidate for future studies due to its antifungal properties and availability. cis-Abienol, despite its good antifungal activity, is not feasible for large-scale use due to the production and stability limitations.

eISSN:
1612-9237
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
General Interest, Life Sciences, other, Physics