A Simultaneous Analytical Method to Profile Non-Volatile Components with Low Polarity Elucidating Differences Between Tobacco Leaves Using Atmospheric Pressure Chemical Ionization Mass Spectrometry Detection

Open access


A comprehensive analytical method using liquid chromatography atmospheric pressure chemical ionization mass spectrometry detector (LC/APCI-MSD) was developed to determine key non-volatile components with low polarity elucidating holistic difference among tobacco leaves. Nonaqueous reversed-phase chromatography (NARPC) using organic solvent ensured simultaneous separation of various components with low polarity in tobacco resin. Application of full-scan mode to APCI-MSD hyphenated with NARPC enabled simultaneous detection of numerous intense product ions given by APCI interface. Parameters for data processing to filter, feature and align peaks were adjusted in order to strike a balance between comprehensiveness and reproducibility in analysis. 63 types of components such as solanesols, chlorophylls, phytosterols, triacylglycerols, solanachromene and others were determined on total ion chromatograms according to authentic components, wavelength spectrum and mass spectrum. The whole area of identified entities among the ones detected on total ion chromatogram reached to over 60% and major entities among those identified showed favorable linearity of determination coefficient of over 0.99. The developed method and data processing procedure were therefore considered feasible for subsequent multivariate analysis. Data matrix consisting of a number of entities was then subjected to principal component analysis (PCA) and hierarchical clustering analysis. Cultivars of tobacco leaves were distributed far from each cultivar on PCA score plot and each cluster seemed to be characterized by identified non-volatile components with low polarity. While fluecured Virginia (FCV) was loaded by solanachromene, phytosterol esters and triacylglycerols, free phytosterols and chlorophylls loaded Burley (BLY) and Oriental (ORI) respectively. Consequently the whole methodology consisting of comprehensive method and data processing procedure proved useful to determine key-components among cultivars of tobacco leaves, and was expected to additionally expand coverage that metabolomics study has ensured. [Beitr. Tabakforsch. Int. 27 (2016) 60-73]

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Davis D. and M.T. Nielsen: Tobacco: Production Chemistry and Technology; edited by D. Davis and M.T. Nielsen Blackwell Science Oxford UK1999; ISBN-13: 978-0632047918.

  • 2. Voges E.: Tobacco Encyclopedia; Tobacco Journal International Virginia USA 1984; ISBN-13: 978-3920615073.

  • 3. Rodman A. and T.A. Perfetti: The Chemical Components of Tobacco and Tobacco Smoke Second Edition; CRC Press Taylor and Francis Group Boca Raton FL USA 2013; ISBN: 9781466515482.

  • 4. Leffingwell J.C.: Basic Chemical Constituents of Tobacco Leaf and Differences among Tobacco Types; in: Tobacco: Production Chemistry and Technology; edited by D. Davis and M.T. Nielsen Blackwell Science Oxford United Kingdom 1999 pp. 265-284; ISBN-13: 978-0632047918.

  • 5. Stedman R.L.: The Chemical Composition of Tobacco and Tobacco Smoke; Chem. Rev. 68 (1968) 153-207; DOI: 10.1021/cr60252a002.

  • 6. Schmeltz I. and D. Hoffmann: Nitrogen-Containing Compounds in Tobacco and Tobacco Smoke; Chem. Rev. 77 (1977) 295-311; DOI: 10.1021/cr60307a001.

  • 7. Krishnan P. N.J. Kruger and R.G. Ratcliffe: Metabolite Fingerprinting and Profiling in Plants Using NMR; J. Exp. Bot. 56 (2005) 255-265; DOI:10.1093/jxb/ eri010.

  • 8. Zhang L. X. Wang J. Guo Q. Xia G. Zhao H. Zhou and F. Xie: Metabolic Profiling of Chinese Tobacco Leaf of Different Geographical Origins by GC-MS; J. Agric. Food Chem. 61 (2013) 2597-2605; DOI: 10.1021/jf400428t.

  • 9. Zhao Y. C. Zhao X. Lu H. Zhou Y. Li J. Zhou Y. Chang J. Zhang L. Jin F. Lin and G. Xu: Investigation of the Relationship between the Metabolic Profile of Tobacco Leaves in Different Planting Regions and Climate Factors Using a Pseudotargeted Method Based on Gas Chromatography/Mass Spectrometry; J. Proteome Res. 12 (2013) 5072-5083; DOI: 10.1021/ pr400799a.

  • 10. Zhang J. Y. Zhang Y. Du S. Chen and H. Tang: Dynamic Metabonomic Responses of Tobacco (Nicotiana tabacum) Plants to Salt Stress; J. Proteome Res. 10 (2011) 1904-1914; DOI: 10.1021/pr101140n.

  • 11. Cho K. Y. Kim S.J. Wi J.B. Seo J. Kwon J.H. Chun K.Y. Park and M.H. Nam: Nontargeted Metabolite Profiling in Compatible Pathogen-Inoculated Tobacco (Nicotiana tabacum L. cv. Wisconsin 38) Using UPLCQ- TOF/MS; J. Agric. Food Chem. 60 (2012) 11015-11028; DOI: 10.1021/jf303702j.

  • 12. Rowland R.L. P.H. Latimer and J.A. Giles: Flue- Cured Tobacco. I. Isolation of Solanesol an Unsaturated Alcohol; J. Am. Chem. Soc. 18 (1956) 4680-4683; DOI: 10.1021/ja01599a041.

  • 13. Ishida N.: A Novel Method for Analyzing Solanesyl Esters in Tobacco Leaves Using Atmospheric Pressure Chemical Ionization/Mass Spectrometer; J. Chromatogr. A 1217 (2010) 5794-5801; DOI: 10.1016/j. chroma.2010.07.037.

  • 14. Ishida N.: Expanded Separation Technique for Chlorophyll Metabolites in Oriental Tobacco Leaf Using Non- Aqueous Reversed Phase Chromatography; J. Chromatogr. A 1218 (2011) 5810-5818; DOI: 10.1016/j. chroma.2011.06.082.

  • 15. Ishida N.: A Comprehensive Study on Triacylglycerols in Tobacco Leaves Using Liquid Chromatography and Atmospheric-Pressure Chemical-Ionization Mass Spectrometry; Beitr. Tabakforsch. Int. 25 (2013) 627-637; DOI: 10.2478/cttr-2013-0939.

  • 16. Rowland R.L.: Flue-Cured Tobacco. III. Solanachromene and α-Tocopherol; J. Am. Chem. Soc. 80 (1958) 6130-6133; DOI: 10.1021/ja01555a057.

  • 17. Ishida N.: A Method for Simultaneous Analysis of Phytosterols and Phytosterol Esters in Tobacco Leaves Using Non-Aqueous Reversed Phase Chromatography and Atmospheric Pressure Chemical Ionization Mass Spectrometry Detector; J. Chromatogr. A 1340 (2014) 99-108; DOI: 10.1016/j.chroma.2014.03.021.

  • 18.Want E.J. A. Nordström H. Morita and G. Siuzdak: From Exogenous to Endogenous: The Inevitable Imprint of Mass Spectrometry in Metabolomics; J. Proteome Res. 6 (2007) 459-468; DOI: 10.1021/ pr060505+.

  • 19. Lu W. B.D. Bennett and J.D. Rabinowitz: Analytical Strategies for LC-MS-Based Targeted Metabolomics; J. Chromatogr. B 871 (2008) 236-242; DOI: 10.1016/ j.jchromb.2008.04.031.

  • 20. Kuehnbaum N.L. and P. Britz-McKibbin: New Advances in Separation Science for Metabolomics: Resolving Chemical Diversity in a Post-Genomic Era; Chem. Rev. 113 (2013) 2437-2468; DOI: 10.1021/cr300484s.

  • 21. Hurtado-Fernández E. T. Pacchiarotta E. Longueira- Suárez O.A. Mayboroda A. Fernández-Gutiérrez and A. Carrasco-Pancorbo: Evaluation of Gas Chromatography-Atmospheric Pressure Chemical Ionization-Mass Spectrometry as an Alternative to Gas Chromatography-Electron Ionization-Mass Spectrometry: Avocado Fruit as Example; J. Chromatogr. A 1313 (2013) 228-244; DOI: 10.1016/j.chroma.2013.08.084.

  • 22. Cho K. Y. Kim S.J. Wi J.B. Seo J. Kwon J.H. Chung K.Y. Park and M.H. Nam: Metabolic Survey of Defense Responses to a Compatible Hemibiotroph Phytophthora parasitica var. nicotianae in Ethylene Signaling-Impaired Tobacco; J. Agric. Food Chem. 61 (2013) 8477-8489; DOI: 10.1021/jf401785w.

  • 23. Monton M.R.N. and T. Soga: Metabolome Analysis by Capillary Electrophoresis-Mass Spectrometry; J. Chromatogr. A 1168 (2007) 237-246; DOI: 10.1016/ j.chroma.2007.02.065.

  • 24. Sandra K. M. Moshir F. D'hondt K. Verleysen K. Kasa and P. Sandra: Highly Efficient Peptide Separations in Proteomics Part 1. Unidimensional High Performance Liquid Chromatography; J. Chromatogr. B 866 (2008) 48-63. DOI: 10.1016/j.jchromb.2007.10.034.

  • 25. Dugo P. M. Beccaria N. Fawzy P. Donato F. Cacciola and L. Mondello: Mass Spectrometric Elucidation of Triacylglycerol Content of Brevoortia tyrannus (Menhaden) Oil Using Non-Aqueous Reversed-Phase Liquid Chromatography Under Ultra High Pressure Conditions; J. Chromatogr. A 1259 (2012) 227-236; DOI: 10.1016/j.chroma.2012.03.067.

  • 26. Bamba T. J.W. Lee A. Matsubara and E. Fukusaki: Metabolic Profiling of Lipids by Supercritical Fluid Chromatography/Mass Spectrometry; J. Chromatogr. A 1250 (2012) 212-21; DOI: 10.1016/j.chroma.2012.05.068.

  • 27. Vrhovsek U. D. Masuero M. Gasperotti P. Franceschi L. Caputi R. Viola and F. Mattivi: A Versatile Targeted Metabolomics Method for the Rapid Quantification of Multiple Classes of Phenolics in Fruits and Beverages; J. Agric. Food Chem. 60 (2012) 8831-8840; DOI: 10.1021/jf2051569.

  • 28. Abu-Reidah I.M. M.M. Contreras D. Arráez-Román A. Segura-Carretero and A. Fernández-Gutiérrez: Reversed-Phase Ultra-High-Performance Liquid Chromatography Coupled to Electrospray Ionization- Quadrupole-Time-of-Flight Mass Spectrometry as a Powerful Tool for Metabolic Profiling of Vegetables: Lactuca sativa as an Example of its Application; J. Chromatogr. A 1313 (2013) 212-227; DOI: 10.1016/ j.chroma.2013.07.020.

  • 29. Gan H.H. C. Soukoulis and I. Fisk: Atmospheric Pressure Chemical Ionisation Mass Spectrometry Analysis Linked With Chemometrics for Food Classification - A Case Study: Geographical Provenance and Cultivar Classification of Monovarietal Clarified Apple Juices; Food Chem. 146 (2014) 149-156; DOI: 10.1016/j.foodchem.2013.09.024.

  • 30. Parris N.A.: Non-Aqueous Reversed-Phase Liquid Chromatography: A Neglected Approach to the Analysis of Low Polarity Samples; J. Chromatogr. A 157 (1978) 161-170; DOI:10.1016/S0021-9673(00)92332-X.

  • 31. Yang S. M. Sadilek and M.E. Lidstrom: Streamlined Pentafluorophenylpropyl Column Liquid Chromatography- Tandem Quadrupole Mass Spectrometry and Global 13C-labeled Internal Standards Improve Performance for Quantitative Metabolomics in Bacteria; J. Chromatogr. A 1217 (2010) 7401-741; DOI: 10.1016/ j.chroma.2010.09.055.

Journal information
Impact Factor

CiteScore 2018: 0.69

SCImago Journal Rank (SJR) 2018: 0.295
Source Normalized Impact per Paper (SNIP) 2018: 0.491

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 362 239 3
PDF Downloads 185 121 11