Mainstream Smoke Chemistry and in Vitro and In Vivo Toxicity of the Reference Cigarettes 3R4F and 2R4F

E Roemer 1 , H Schramke 1 , H Weiler 2 , A Buettner 3 , S Kausche 2 , S Weber 2 , A Berges 4 , M Stueber 2 , M Muench 2 , E Trelles-Sticken 2 , J Pype 4 , K Kohlgrueber 2 , H Voelkel 2  and S Wittke 2
  • 1 Philip Morris International Operations, Philip Morris Products S.A., Rue des Usines 90, 2000 Neuchâtel, Switzerland
  • 2 Philip Morris International R&D, Philip Morris Research Laboratories GmbH, Fuggerstr. 3, 51149 Cologne, Germany
  • 3 Histovia GmbH, SchoeneAussicht 5, 51491 Overath, Germany
  • 4 Philip Morris International R&D, Philip Morris Research Laboratories bvba, Grauwmeer 14, 3001 Leuven, Belgium


A new reference cigarette, the 3R4F, has been developed to replace the depleting supply of the 2R4F cigarette. The present study was designed to compare mainstream smoke chemistry and toxicity of the two reference cigarettes under the International Organization for Standardization (ISO) machine smoking conditions, and to further compare mainstream smoke chemistry and toxicological activity of the 3R4F cigarette by two different smoking regimens, i.e., the machine smoking conditions specified by ISO and the Health Canada intensive (HCI) smoking conditions.

The in vitro cytotoxicity and mutagenicity was determined in the neutral red uptake assay, the Salmonella reverse mutation assay, and the mouse lymphoma thymidine kinase assay. Additionally, a 90-day nose-only inhalation study in rats was conducted to assess the in vivo toxicity. The comparison of smoke chemistry between the two reference cigarettes found practically the same yields of total particulate matter (TPM), ‘tar’, nicotine, carbon monoxide, and most other smoke constituents. For both cigarettes, the in vitro cytotoxicity, mutagenicity, and in vivo toxicity showed the expected smoke-related effects compared to controls without smoke exposure. There were no meaningful differences between the 2R4F and 3R4F regarding these toxicological endpoints. The assessments for the 3R4F cigarette by smoking regimen found as a trivial effect, due to the higher amount of smoke generated per cigarette under HCI conditions, an increased yield of toxicant and higher toxicological activity per cigarette. However, per mg TPM, ‘tar’, or nicotine, the amounts of toxicants and the in vitro toxicity were generally lower under HCI conditions, but the in vivo activity was not different between the two machine smoking conditions. Overall, as the main result, the present study suggests equivalent smoke chemistry and in vitro and in vivo toxicity for the 2R4F and 3R4F reference cigarettes.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Chepiga, T.A., M.J. Morton, P.A. Murphy, J.T. Avalos, B.R. Bombick, D.J. Doolittle, M.F. Borgerding, and J.E. Swauger: A comparison of the mainstream smoke chemistry and mutagenicity of a representative sample of the US cigarette market with two Kentucky reference cigarettes (K1R4F and K1R5F); Food Chem. Toxicol. 38 (2000) 949-962.

  • 2. Werley, M.S., SA. Freelin, S.E. Wrenn, B. Gersten-berg, E. Roemer, H. Schramke, E. Van Miert, P. Vanscheeuwijck, S. Weber, and CR. Coggins: Smoke chemistry, in vitro and in vivo toxicology evaluations of the electrically heated cigarette smoking system series K; Regul. Toxicol. Pharmacol. 52 (2008) 122-139.

  • 3. Chen, P.X. and S.C. Moldoveanu: Mainstream smoke chemical analyses for 2R4F Kentucky reference cigarette; Beitr. Tabakforsch. Int. 20 (2003) 448-458.

  • 4. Counts, M.E., F.S. Hsu, and F.J. Tewes: Development of a commercial cigarette “market map” comparison methodology for evaluating new or non-conventional cigarettes; Regul. Toxicol. Pharmacol. 46 (2006) 225-242.

  • 5. Adam, T., S. Mitschke, T. Streibel, R.R. Baker, and R. Zimmermann: Puff-by-puff resolved characterisation of cigarette mainstream smoke by single photon ionisation (SPI)-time-of-flight mass spectrometry (TOFMS): comparison of the 2R4F research cigarette and pure Burley, Virginia, Oriental and Maryland tobacco cigarettes; Anal. Chim. Acta 572 (2006) 219-229.

  • 6. Intorp, M, S. Purkis, M. Whittaker, and W. Wright: Determination of “Hoffmann Analytes” in Cigarette Mainstream Smoke. The Coresta 2006 Joint Experiment; Beitr. Tabakforsch. Int. 23 (2009) 161-202.

  • 7. Rickert, W.S., A.H. Trivedi, R.A. Momin, W.G. Wright, and J.H. Lauterbach: Effect of smoking conditions and methods of collection on the mutagenicity and cytotoxicity of cigarette mainstream smoke; Toxicol. Sci. 96 (2007) 285-293.

  • 8. Roemer, E., T.H. Ottmueller, V. Zenzen, S. Wittke, F. Radtke, I. Blanco, and R.A. Carchman: Cytotoxicity, mutagenicity, and tumorigenicity of mainstream smoke from three reference cigarettes machine-smoked to the same yields of total particulate matter per cigarette; Food Chem. Toxicol. 47 (2009) 1810-1818.

  • 9. Roemer, E., R. Stabbert, K. Rustemeier, D.J. Veltel, T.J. Meisgen, W. Reininghaus, R.A. Carchman, CL. Gaworski, and K.F. Podraza: Chemical composition, cytotoxicity and mutagenicity of smoke from US commercial and reference cigarettes smoked under two sets of machine smoking conditions; Toxicology 195 (2004) 31-52.

  • 10. Schramke, H., T.J. Meisgen, F.J. Tewes, W. Gomm, and E. Roemer: The mouse lymphoma thymidine kinase assay for the assessment and comparison of the mutagenic activity of cigarette mainstream smoke particulate phase; Toxicology 227 (2006) 193-210.

  • 11. Chen, J., R. Higby, D. Tian, D. Tan, M.D. Johnson, Y. Xiao, K.J. Kellar, S. Feng, and P.G. Shields: Toxicological analysis of low-nicotine and nicotine-free cigarettes; Toxicology 249 (2008) 194-203.

  • 12. Gaworski, CL., R. Lemus-Olalde, and E.L. Carmines: Toxicological evaluation of potassium sorbate added to cigarette tobacco; Food Chem. Toxicol. 46 (2008) 339-351.

  • 13. Newland, N. and A. Richter: Agents associated with lung inflammation induce similar responses in NCI-H292 lung epithelial cells; Toxicol. in vitro 22 (2008) 1782-1728.

  • 14. Carter, CA. and J.T. Hamm: Multiplexed quantitative high content screening reveals that cigarette smoke condensate induces changes in cell structure and function through alterations in cell signaling pathways in human bronchial cells; Toxicology 261 (2009) 89-102.

  • 15. Higuchi, M.A., J. Sagartz, W.K. Shreve, and P.H. Ayres: Comparative subchronic inhalation study of smoke from the 1R4F and 2R4F reference cigarettes; Inhal. Toxicol. 16 (2004) 1-20.

  • 16. ISO 3308: Routine analytical cigarette smoking machine - Definitions and standard conditions. International Organization for Standardization, Geneva, Switzerland, 2000.

  • 17. Health Canada: Determination of ’tar’, nicotine and carbon monoxide in mainstream smoke. Health Canada - Official Method 1999.

  • 18. Marian, C, R.J. O'Connor, M.V. Djordjevic, V.W. Rees, D.K. Hatsukami, and P.G. Shields: Reconciling human smoking behavior and machine smoking patterns: implications for understanding smoking behavior and the impact on laboratory studies; Cancer Epidemiol. Biomarkers Prev. 18 (2009) 3305-3320.

  • 19. Hammond, D., G.T. Fong, K.M. Cummings, and A. Hyland: Smoking topography, brand switching, and nicotine delivery: results from an in vivo study; Cancer Epidemiol. Biomarkers Prev. 14 (2005) 1370-1375.

  • 20. Hammond, D., G.T. Fong, K.M. Cummings, R.J. O'Connor, G.A. Giovino, and A. McNeill: Cigarette yields and human exposure: a comparison of alternative testing regimens; Cancer Epidemiol. Biomarkers Prev. 15 (2006) 1495-1501.

  • 21. ISO 3402: Tobacco and tobacco products - Atmosphere for conditioning and testing. International Organization for Standardization, Geneva, Switzerland, 1999.

  • 22. Radtke, F., M. Schmickler, W. Ochel, and H. Schaffernicht: Pumpenanordnung. Patent EP1832745 (A1) In Office, E.P. (ed.), Germany, 2007.

  • 23. ISO 4387: Determination of total and nicotine-free dry particulate matter using routine analytical smoking machine. International Organization for Standardization, Geneva, Switzerland, 1991.

  • 24. ISO 10315: Cigarettes - Determination of nicotine in smoke condensate - Gas chromatographic method (2nd ed.). International Organization for Standardization, Geneva, Switzerland, 2000.

  • 25. ISO 8454: Cigarettes - Determination of carbon monoxide in the vapour phase of cigarette smoke -NDIR method (3rd ed.). International Organization for Standardization, Geneva, Switzerland, 2007.

  • 26. CORESTA: Recommended Method No. 74 -Determination of selected carbonyls in mainstream cigarette smoke by high performance liquid chroma-tography (HPLC). Cooperation Centre for Scientific Research Relative to Tobacco, 2011.

  • 27. CORESTA: Recommended Method No. 70 -Determination of selected volatile organic compounds in the mainstream smoke of cigarettes - gas chroma-tography-mass spectrometry method. Co-operation Centre for Scientific Research Relative to Tobacco, 2010.

  • 28. Diekmann, J., A. Wittig, and R. Stabbert: Gas chromatographic-mass spectrometric analysis of acrylamide and acetamide in cigarette mainstream smoke after on-column injection; J. Chromatogr. Sci. 46 (2008) 659-663.

  • 29. Diekmann, J., M. Douda, and K. Rustemeier: Rapid and sensitive method for the determination of propylene oxide in cigarette mainstream smoke by gas chroma-tography-mass spectrometry; J. Chromatogr. Sci. 44 (2006) 32–34.

  • 30. Stabbert, R., K.H. Schaefer, C. Biefel, and K. Rustemeier: Analysis of aromatic amines in cigarette smoke; Rapid Commun. Mass. Spectrom. 17 (2003) 2125–2132.

  • 31. CORESTA: Recommended Method (3rd Draft): The determination of nitric oxide in mainstream smoke of cigarettes by chemiluminescent analysis; Available at (accessed January 2012): http://legacy.library.ucsf.-edu/tid/vpe43d00/pdf;jsessionid=BEB3E72646 C743124370F7007FA332D8.tobacco03.

  • 32. Mottier, N. and F. Jeanneret: Evaluation of two derivatization reagents for the determination by LC-MS/MS of ammonia in cigarette mainstream smoke; J. Agric. Food Chem. 59 (2011) 92–97.

  • 33. Wagner, K.A., N.H. Finkel, J.E. Fossett, and I.G. Gillman: Development of a quantitative method for the analysis of tobacco-specific nitrosamines in mainstream cigarette smoke using isotope dilution liquid chromatography/electrospray ionization tandem mass spectrometry; Anal. Chem. 77 (2005) 1001–1006.

  • 34. Maron, D.M. and B.N. Ames: Revised methods for the Salmonella mutagenicity test; Mutat. Res. 113 (1983) 173–215.

  • 35. Cole, J., W.J. Muriel, and B.A. Bridges: The mutagenicity of sodium fluoride to L5178Y [wild-type and TK+/- (3.7.2c)] mouse lymphoma cells; Mutagenesis 1 (1986) 157–167.

  • 36. Gaworski, C.L., H. Schramke, J. Diekmann, T.J. Meisgen, F.J. Tewes, D.J. Veltel, P.M. Van-scheeuwijck, N. Rajendran, M. Muzzio, and H.J. Haussmann: Effect of filtration by activated charcoal on the toxicological activity of cigarette mainstream smoke from experimental cigarettes; Inhal. Toxicol. 21 (2009) 688–704.

  • 37. ISO 3308: Routine analytical cigarette-smoking machine - Definitions and standard conditions; International Organization for Standardization, Geneva, Switzerland, 2000.

  • 38. Young, J.T.: Histopathologic examination of the rat nasal cavity; Fundam. Appl. Toxicol. 1 (1981) 309–312.

  • 39. Lewis, D.J.: Factors affecting the distribution of tobacco smoke-induced lesions in the rodent larynx; Toxicol. Lett. 9 (1981) 189–194.

  • 40. Carmines, E.L., C.L. Gaworski, A.S. Faqi, and N. Rajendran: In utero exposure to 1R4F reference cigarette smoke: evaluation of developmental toxicity; Toxicol. Sci. 75 (2003) 134–147.

  • 41. Vanscheeuwijck, P.M., A. Teredesai, P.M. Terpstra, J. Verbeeck, P. Kuhl, B. Gerstenberg, S. Gebel, and E.L. Carmines: Evaluation of the potential effects of ingredients added to cigarettes. Part 4: subchronic inhalation toxicity; Food Chem. Toxicol. 40 (2002) 113–131.

  • 42. Counts, M.E., MJ. Morton, S.W. Laffoon, R.H. Cox, and PJ. Lipowicz: Smoke composition and predicting relationships for international commercial cigarettes smoked with three machine-smoking conditions; Regul. Toxicol. Pharmacol. 41 (2005) 185-227.

  • 43. Okuwa, K., M. Tanaka, Y. Fukano, H. Nara, Y. Nishijima, and T. Nishino: In vitro micronucleus assay for cigarette smoke using a whole smoke exposure system: a comparison of smoking regimens; Exp. Toxicol. Pathol. 62 (2009) 433-40.

  • 44. Roemer, E. and R.A. Carchman: Limitations of cigarette machine smoking regimens; Toxicol. Lett. 203 (2011) 20-27.

  • 45. Terpstra, P.M., A. Teredesai, P.M. Vanscheeuwijck, J. Verbeeck, G. Schepers, F. Radtke, P. Kuhl, W. Gomm, E. Anskeit, and G. Patskan: Toxicological evaluation of an electrically heated cigarette. Part 4: Subchronic inhalation toxicology; J. Appl. Toxicol. 23 (2003) 349-362.

  • 46. Baker, R.R., E.D. Massey, and G. Smith: An overview of the effects of tobacco ingredients on smoke chemistry and toxicity; Food Chem. Toxicol. 42 Suppl. (2004) S53-S83.

  • 47. DiGiovanni, J.: Multistage carcinogenesis in mouse skin; Pharmacol. Ther. 54 (1992) 63-128.

  • 48. Berenblum, I.: The cocarcinogenic action of croton resin; Cancer Res. 1 (1941) 44-48.

  • 49. Belkebir, E., C. Rousselle, C. Duboudin, L. Bodin, and N. Bonvallot: Haber's rule duration adjustments should not be used systematically for risk assessment in public health decision-making; Toxicol. Lett. 204 (2010) 148-155.

  • 50. Tsuji, H., K.M. Lee, K. Yoshino, H. Nakamura, G. Lulham, R. Renne, and H. Yoshimura: Comparison of the physiological and morphological effects of cigarette smoke exposure at comparable weekly doses on Sprague-Dawley rats; Inhal. Toxicol. 23 (2010) 17-32.

  • 51. St Charles, F.K., CJ. Cook, and P.M. Clayton: The linear relationship between cigarette ‘tar’ and nicotine yields: Regulatory implications for smoke constituent ratios; Regul. Toxicol. Pharmacol. 59 (2011) 143-148.


Journal + Issues