Open Access

A Transient Method for Determining Thermal Diffusivity of Tobacco Stems


Cite

A microwave generator and a closed-circuit wind tunnel were used to measure the thermal diffusivity of tobacco (Nicotianatabacum L.) stems in vivo by the unsteady-state method. A simple mathematical model for heat flow, based on Fourier's heat-conduction equation and Newton's law of cooling, was used in this study. The microwave method was found to be relatively rapid as both heating and cooling of a cylindrical stem in an air stream could be completed in approximately 30 minutes for thermal-diffusivity determinations. Thermal-diffusivity value of the tobacco stems, containing 94 % moisture and a mean stem temperature of 30°C, was found to be (1.38 ± 0.06) × 10-7 m2 s-1. The coefficient of variation for the measurements did not exceed 1.4 % as determined through the analysis of cooling curves for five different air-flow rates over the stems. This study showed that the microwave technique could be effectively used to determine both accurately and reliably the thermal diffusivity of tobacco stems in vivo.

eISSN:
1612-9237
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
General Interest, Life Sciences, other, Physics