Silent angels the genetic and clinical aspects of Rett syndrome

Open access

Abstract

Rett syndrome is a neurodevelopmental genetic disorder and, because of some behavioral characteristics, individuals affected by the disease are known as silent angels. Girls with Rett syndrome perform stereotyped movements, they have learning difficulties, their reaction time is prolonged, and they seem alienated in the environment. These children require constant pediatric, neurological and orthopedic care. In the treatment of Rett syndrome physical therapy, music therapy, hydrotherapy, hippotherapy, behavioral methods, speech therapy and diet, are also used. In turn, psychological therapy of the syndrome is based on the sensory integration method, using two or more senses simultaneously. In 80% of cases, the syndrome is related to mutations of the MECP2 gene, located on chromosome X. The pathogenesis of Rett syndrome is caused by the occurrence of a non-functional MeCP2 protein, which is a transcription factor of many genes, i.e. Bdnf, mef2c, Sgk1, Uqcrc1. Abnormal expression of these genes reveals a characteristic disease phenotype. Clinical symptoms relate mainly to the nervous, respiratory, skeletal and gastrointestinal systems. Currently causal treatment is not possible. However, researchers are developing methods by which, perhaps in the near future, it will be possible to eliminate the mutations in the MECP2 gene, and this will give a chance to the patient for normal functioning.

The paper presents the etiology and pathogenesis of the disease, genetic, clinical, pharmacological aspects and other forms of Rett syndrome treatment.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Midro A. T. Zespół Retta–postępy badań nad patogenezą. Neurologia Dziecięca 2010; 19(38) 55-63.

  • 2. http://www.ncbi.nlm.nih.gov/gene/4204

  • 3. Online Mendelian Inheritance In Man WWW.nbci.nlm.nih.gov/omim

  • 4. Venancio M. Santos M. Pereria S.A et al.: An explanation for another familial case of Rett syndrome: maternal germline mosaicism. Europ J. Hum Genet 2007; 15: 902-904.

  • 5. Shoichet S.A. Kunde S.A. Viertel P. et al.: Haploinsufficiency of novel FOXG1B variants In a patient with severe mental retadation brain malformations and microcephaly. Hum Genet 2005; 117: 536-544.

  • 6. Ariani F. Hayek G. Rondinella D. et al.: FOXG1 is responsible for the congenital variant of Rett syndrome. Am J Hum Genet 2008; 83:89-93.

  • 7. Borg I. Freude K. Kübart S. et al.: Disruption of Netrin G1 by a balanced chromosome translocation In a girl with Rett syndrome. Eur J Hum Genet 2005; 13: 921-927.

  • 8. Evans J.C. Archer H.L. Whatley S.D. et al.: Germline mosaicism for a MECP2 mutation in a Man with two Rett dauthers. Clin Genet 2006; 70 (4): 336-338.

  • 9. Gill H. Cheadle J.P. Maynard J. et al.: Mutation analysis in the MECP2 gene and genetic counselling for Rett syndrome. J Med. Genet 2003; 40: 380-384.

  • 10. Villard L. Lḗvy N. Xiang F. et al.: Segregation of a totally skewed pattern of X chromosome inactivation in four familial cases of Rett syndrome without MECP2 mutation: implications for the disease. J Med Genet 2001; 38 (7): 435-442.

  • 11. Genetyka medyczna : podręcznik dla studentów / red. Gerard Drewa Tomasz Ferenc. - Wyd. 1 dodr. - Wrocław : Elsevier Urban & Partner cop. 2013; 248-249; 631-632.

  • 12. Olson CO Zachariah RM Ezeonwuka CD Liyanage VR Rastegar M: Brain region-specific expression of MeCP2 isoforms correlates with DNA methylation within Mecp2 regulatory elements

  • 13. Bertani I. Rusconi L. Bolognese F. et al.: Functional consequences of mutations In CDKL5 an X linked gene involved In infant ile spasms and mental retardation. J Biol Chem 2006; 281: 32048-32056

  • 14. Dragich J. Houẃink-Manville C. Schanen N. et al.: Rett Syndrome: a surprising result of mutation in MECP2. Hum Mol Genet 2000; 9: 2365-2375.

  • 15. Young I. Zoghbi H.Y.: X-chromosome inactivation patterns are inbalanced and affect the phenotypic outcome In a Mouse model of rett syndrome. Am J Hum Genet 2004; 74: 511-520

  • 16. Chahrour M Huda Y. Zoghbi: The Story of Rett Syndrome: From Clinic to Neurobiology.

  • 17. Kerr A.M. Archer H.L. Evans J.C. Prescott R.J. and Gibbon F.: People with MECP2 mutation-positive Rett disorder who converse; J. Intellect. Disabil. Res. 2006; 50: 386–394.

  • 18. Leonard H. Colvin L. Christodoulou J. Schiavello T. Williamson S. Davis M. Ravine D. Fyfe S. de Klerk N. Matsuishi T. et al.: Patients with the R133C mutation: is their phenotype different from patients with Rett syndrome with other mutations?; J. Med. Genet. 2003; 40: e52

  • 19. Neul J.L. Fang P. Barrish J. Lane J. Caeg E. Smith E.O. Zoghbi H. Percy A. and Glaze D.G.: Specific mutations in methyl-CpG-binding protein 2 confer different severity in Rett syndrome; Neurology. 2007.

  • 20. Bienvenu T. and Chelly J.: Molecular genetics of Rett syndrome: when DNA methylation goes unrecognized; Nat. Rev. Genet. 2006; 7: 415–426.

  • 21. Milani D. Pantaleoni C. D'Arrigo S. Selicorni A. and Riva D.: Another patient with MECP2 mutation without classic Rett syndrome phenotype; Pediatr. Neurol. 2005; 32: 355–357

  • 22. Watson P. Black G. Ramsden S. Barrow M. Super M. Kerr B. and Clayton-Smith J.: Angelman syndrome phenotype associated with mutations in MECP2 a gene encoding a methyl CpG binding protein; J. Med. Genet. 2001; 38: 224–228

  • 23. Carney R.M. Wolpert C.M. Ravan S.A. Shahbazian M. Ashley-Koch A. Cuccaro M.L. Vance J.M. and Pericak-Vance M.A.: Identification of MeCP2 mutations in a series of females with autistic dis order; Pediatr. Neurol. 2003; 28: 205–211

  • 24. Lam C.W. Yeung W.L. Ko C.H. Poon P.M. Tong S.F. Chan K.Y. Lo I.F. Chan L.Y. Hui J. Wong V. et al.: Spectrum of mutations in the MECP2 gene in patients with infantile autism and Rett syndrome; J. Med. Genet. 2000; 37: E41

  • 25. Klauck S.M. Lindsay S. Beyer K.S. Splitt M. Burn J. and Poustka A.: A mutation hot spot for nonspecific X-linked mental retardation in the MECP2 gene causes the PPM-X syndrome; Am. J. Hum. Genet. 2002; 70: 1034–1037.

  • 26. Cohen D. Lazar G. Couvert P. Desportes V. Lippe D. Mazet P. and Heron D.: MECP2 mutation in a boy with language disorder and schizophrenia; Am. J. Psychiatry. 2002; 159: 148–149.

  • 27. Jan M.M. Dooley J.M. and Gordon K.E.: Male Rett syndrome variant: application of diagnostic criteria; Pediatr. Neurol. 1999; 20: 238–240.

  • 28. Gadalla K.K et al. (2011) MeCP2 and Rett syndrome: reversibility and potentai; avenues for therapy. Biochem. J. 439 1-14

  • 29. Lombardi L.M et. al. (2015) MECP2 disorders from the clinic to mice and back. J. Clin. Invest. 125 2914-2923

  • 30. Werg S.M. et al. Rett syndrome from bed to bench. Pediatr. Neonatol. 2011 52 309-316.

  • 31. Pozzo-Miller L. et al. Rett Syndrome: reaching for clnical trials. Neurotherapeutics 2015 12 631-640

  • 32. Ricceri L. et al. Rett syndrome treatment in mouse models: searching for effective targets and strategies. Neuropharmacology 2013 68 106-115

  • 33. Chapleau C.A. et al. Recent progress in Rett Syndrome and MeCP2 dysfunction: assessment of potential treatment options. Future Neurol. Published online January 1 2013.

  • 34. Huang H.S. et al. Topoisomerase inhibitors unsilence the dormant allele of Ube3a in neurons. Nature 2012; 481 185–189.

  • 35. Meng L. et al. Towards a therapy for Angelman syndrome by targeting a long non-coding RNA. Nature 2015; 518 409–412.

  • 36. Durand S. et al. NMDA receptor regulation prevents regression of visual cortical function in the absence of Mecp2. Neuron 2012; 76 1078–1090

  • 37. Gray S.J. et al. (2011) Preclinical differences of intravascular AAV9 delivery to neurons and glia: a comparative study of adult mice and nonhuman primates. Mol. Ther. 19 1058–1069

  • 38. Duque S. et al. (2009) Intravenous administration of self-complementary AAV9 enables transgene delivery to adult motor neurons. Mol. Ther. 17 1187–1196

  • 39. Foust K.D. et al. (2009) Intravascular AAV9 preferentially targets neonatal neurons and adult astrocytes. Nat. Biotechnol. 27 59–65

  • 40. Gadalla K.K. et al. (2013) Improved survival and reduced phenotypic severity following AAV9/MECP2 gene transfer to neonatal and juvenile male Mecp2 knockout mice. Mol. Ther. 21 18–30

  • 41. Garg S.K. et al. (2013) Systemic delivery of MeCP2 rescues behavioral and cellular deficits in female mouse models of Rett syndrome. J. Neurosci. 33 13612–13620

  • 42. Savic N. and Schwank G. (2015) Advances in therapeutic CRISPR/Cas9 genome editing. Transl. Res. Published online September 26 2015. http://dx.doi.org/10.1016/j.trsl.2015.09.008

  • 43. Deffit S.N. and Hundley H.A. (2015) To edit or not to edit: regulation of ADAR editing specificity and efficiency. RNA Pub-lished online November 26 2015. http://dx.doi.org/10.1002/wrna.1319

  • 44. Ricceri L. et al. (2008) Mouse models of Rett syndrome: from behavioural phenotyping to preclinical evaluation of new therapeutic approaches. Behav. Pharmacol. 19 501–517

  • 45. Ramirez J.M. et al. (2013) Breathing challenges in Rett Syndrome: lessons learned from humans and animal models. Respir. Physiol. Neurobiol. 189 280–287

  • 46. Katz D.M. et al. (2009) Breathing disorders in Rett syndrome: progressive neurochemical dysfunction in the respiratory network after birth. Respir. Physiol. Neurobiol. 168 101–108

  • 47. Katz D.M. et al. (2012) Preclinical research in Rett syndrome: setting the foundation for translational success. Dis. Model. Mech. 5 733–745

  • 48. Kosno D. (2011) Zespół Retta – Zaburzenie Neurorozwojowe o Podłożu Genetycznym “Nieznane? Poznane. – Zaburzenia rozwojowe u dzieci z rzadkimi zespołami genetycznymi i wadami wrodzonymi.” Marzeny Buchnat i Pawelczak K Wyd. UAM Poznań

  • 49. Cianfaglione R. Clarke A. Kerr M. Hastings R.P. Oliver Ch. Et al. (2015) A national survey of Rett syndrome: behavioural characteristics. Journal of Neurodevelopmental Disorders Advancing Interdisciplinary Research 2015 7:11

  • 50. Marschik P. Kaufmann WE Einspieler C. Bartl-Pokorny K.D. Wolin T. Pini G. Budimirovic D.B. Zappella M. Sigafoos J. (2012) Profiling early socio-communicative development in five young girls with the preserved speech variant of Rett syndrome. Res Dev Disabil. 2012 Nov-Dec; 33(6): 1749-56.

  • 51. Byiers B. Dimian A. Symons F.J. (2014) Functional Communication Training in Rett Syndrome: A Preliminary Study. American Journal on Intellectual and Developmental Disabilities July 2014 Vol. 119 No. 4 pp. 340-350

  • 52. Lane J.B. Lee H.S. Smith L.W. Cheng P. Percy A.K. et al. Clinical severity and quality of life in children and adolescents with Rett syndrome. Neurology. 2011 Nov 15;77(20):1812-8.

  • 53. Lotan M. Rett Syndrome. Guidelines for Individual Intervention. The Scientific World Journal 2006 6 (6): 1504-16.

  • 54. Lotan M. Ben-Zeev B. Rett Syndrome. A Review with Emphasis on Clinical Characteristics and Intervention. The Scientific World Journal 2006 (6): 1517-41.

  • 55. Bentkowski Z. Tylki-Szymańska A.: Zespół Retta – aktualny stan wiedzy. Ped. Pol. 1997: 2: 103-112.

  • 56. Pietrykowska A. Patogeneza i rozpoznanie kliniczne zespołu Retta Journal of Health Sciences 2014 4 (1): 401-408.

  • 57. Chahrour M. Huda Y. Zoghbi. The Story of Rett Syndrome: From Clinic to Neurobiology. Figure 1. Onset and Progression of RTT Clinical Phenotypes. Neuron Review 2007: 423.

  • 58. Nomura Y. Early behavior characteristics and sleep disturbance in Rett syndrome. Brain Dev. 2005 27 (Suppl 1): 35–S42.

  • 59. Hagberg B. Rett syndrome: long-term clinical follow-up experiences over four decades. J. Child Neurol. 2005 20: 722–727.

  • 60. Bentkowski Z.A. Tylki-Szymańska A. Jóźwiak S.: Rozpoznanie zespołu Retta w oparciu o własne obserwacje w grupie 100 dziewczynek. Neurologia Dziecięca 200110 (19): 9-17.

Search
Journal information
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 417 243 6
PDF Downloads 210 134 2