Computational Techniques In Management Of Engineering And Business Institutions

Open access


This paper deals with computational techniques used in management engineering in order to support enterprise managers in the decision-making process. Thus, the paper presents an application, built with web technologies for extracting and interpreting information from various sources, enabling the user to analyze data both in text files and the data available on the Internet, results that greatly improves the decision-making process through an efficient and fast analysis of data which, due to large the volume growing exponentially can no longer be covered and analyzed “manually” by a human factor.

1. Abu-Mostafa, Y. S. (2012). Learning From Data. Retrieved Juny 2, 2012, from Learning From Data:

2. Barbat, B. (2002). Sisteme inteligente orientate spre agent. Bucuresti: Editura Academiei Romane.

3. Buraga S.C., Cioca M., Cioca A. (2007) “Grid-Based Decision Support System Used in Disaster Management” Studies in Informatics and Control, Vol. 6, no. 3

4. Buraga S.C., Cioca M. (2004) “Using XML Technologies for Information Integration within an e-Enterprise” 7th International Conference on Development and Application Systems DAS, undere the care of IEEE Romanian Section, Romania

5. Cioca M., Cioca L.I., Buraga S.C. (2007) “Spatial [Elements] decision support system used in disaster management” Digital EcoSystems and Technologies Conference, 2007. DEST'07. Inaugural IEEE-IES, pp. 607-612

6. Cioca L.I., Cioca M. (2007) “Using distributed programming in production system management”, WSEAS Transactions on Information Science and Applications, Vol. 4, no. 2, pp. 303-308

7. Cioca M., Cioca L.I., Buraga S.C. (2005) “Using Semantic Web Technologies to Improve the Design Process in the Context of Virtual Production Systems”, International Journal “WSEAS Transactions on Computers”, IEE INSPEC, no. 12

8. Cioca M. (2003) “Application of Information Technologies and Communications in Mechanical Engineering: using Web Technologies, Internet and e-CASE Instruments” 3rd International Conference" Research and development in mechanical industry

9. DMG. (2012). Data Mining Group. Retrieved February 3, 2012, from Data Mining Group:

10. Draganescu, M. (2000, ianuarie-aprilie 1-2). Constiinta, frontiera a stiintei, frontiera a omenirii. Revista de filosofie, pp. 15-22.

11. Dzitac, I. (2008). Inteligenta Articifiala. Arad: Editura Universitatii Aurel Vlaicu.

12. Elfelly N., Dieulot J.-Y., Borne P. (2008). A Neural Approach of Multimodel Representation of Complex Processes. International Journal of Computers Communications & Control, 149-160.

13. Filip, F. Gh. (2000). Decizie asistata de calculator. Concepte, metode si tehnici pentru deciziile centrate pe analiza datelor. Revista Informatica Economica, pp. 8-22.

14. (n.d.). Google chart Tools - Google Developers. Retrieved February 3, 2012, from

15. Gorunescu, F. (2006). Data Mining Concepte, Modele si Tehnici. Cluj-Napoca: Editura Albastra.

16. MathWorks, Naive Bayes. (2012). Naive Bayes classifier - MATLAB. Retrieved Juny 19, 2012, from

17. MathWorks, Support Vector Machine. (2012). Train support vector machine classifier - MATLAB. Retrieved Juny 19, 2012, from toolbox/bioinfo/ref/svmtrain.html

18. RACAI. (n.d.). Research Institute for Artificial Intelligence. Retrieved March 6, 2012, from Research Institute for Artificial Intelligence: Home/tabid/36/Default.aspx

19. Tufis, D., Cristea, D. & Stamou, S. (2004). BalkaNet: Aims, Methods, Results and Perspectives. A General Overview. ROMANIAN JOURNAL OF INFORMATION SCIENCE AND TECHNOLOGY, 7 (1-2), 9-43.

20. WordNet Search - 3.1. (n.d.). Retrieved October 15, 2011, from WordNet: webwn?s=data+mining&o2=&o0=1&o8=1&o1=1&o7=&o5=&o9=&o6=&o3=&o4=&h=

Journal Information


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 85 85 18
PDF Downloads 45 45 7