Flocculation of flotation tailings using thermosensitive polymers

Open access


The key feature of thermosensitive polymers is the reversible transition between the hydrophilic and hydrophopic forms depending on the temperature. Although the main research efforts are focused on their application in different kinds of drug delivery systems, this phenomenon also allows one to precisely control the stability of solid-liquid dispersions. In this paper research on the application of poly(N-isopropylacrylamide) copolymers in processing of minerals is presented. In the experiments tailings from flotation plant of one of the coal mines of Jastrzębska Spółka Węglowa S.A. (Poland) were used. A laser particle sizer Fritsch Analysette 22 was used in order to determine the Particle Size Distribution (PSD). It was proved that there are some substantial issues associated with the application of thermosensitive polymers in industrial practice which may exclude them from the common application. High salinity of suspension altered the value of Lower Critical Solution Temperature (LCST). Moreover, the co-polymers used in research proved to be efficient flocculating agents without any temperature rise. Finally, the dosage needed to achieve steric stabilization of suspension was greatly beyond economic justification.

Budgin A.M., Kabachii Y.A., Shifrina Z.B., Valetsky P.M., Kochev S.S., Stein B.D., Malyutin A., Bronstein L.M., 2012. Functionalization of magnetic nanoparticles with amphiphilic block copolymers: Self-assembled thermoresponsive submicrometer particles. Langmuir, 28, 4142-4151. DOI: 10.1021/la205056k.

Burdukova E., Ishida N., Shaddick T., Franks G.V., 2011. The size of particle aggregates produced by flocculation with PNIPAM, as a function of temperature. J. Colloid. Interf. Sci., 354, 82-88. DOI: 10.1016/j.jcis.2010.10.016.

Burdukova E., Li H., Bradshaw D.J., Franks G.V., 2010a. Poly (N-isopropylacrylamide) (PNIPAM) as a flotation collector: Effect of temperature and molecular weight. Miner. Eng., 23, 921-927. DOI: 10.1016/j.mineng.2010.03.003.

Burdukova E., Li H., Ishida N., O’Shea J.P., Franks G.V., 2010b. Temperature controlled surface hydrophobicity and interaction forces induced by poly (N-isopropylacrylamide). J. Colloid. Interf. Sci., 342, 586-592. DOI: 10.1016/j.jcis.2009.10.049.

Cheng H., Shen L., Wu C., 2006. LLS and FTIR studies on the hysteresis in association and dissociation of poly(N-isopropylacrylamide) chains in water. Macromolecules, 39, 2325–2329. DOI: 10.1021/ma052561m.

Deng Y., Pelton R., 1995. Synthesis and solution properties of poly(N-isopropylacrylamide-codiallyldimethylammonium chloride). Macromolecules, 28, 4617-4621. DOI: 10.1021/ma00117a036.

Deng Y., Xiao H., Pelton R., 1996. Temperature-sensitive flocculants based on poly(N-isopropylacrylamide-codiallyldimethylammonium chloride). J. Colloid. Interf. Sci., 179, 188-193. DOI: 10.1006/jcis.1996.0201.

Eeckman F., Amighi K., Moës A.J., 2001. Effect of some physiological and non-physiological compounds on the phase transition temperature of thermoresponsive polymers intended for oral controlled-drug delivery. Int. J. Pharm., 222, 259-270. DOI: 10.1016/S0378-5173(01)00716-5.

Forbes E., 2011. Shear, selective and temperature responsive flocculation: A comparison of fine particle flotation techniques. Int. J. Miner. Process., 99, 1-10. DOI: 10.1016/j.minpro.2011.02.001.

Franks G.V., 2005. Stimulant sensitive flocculation and consolidation for improved solid/liquid separation. J. Colloid Interf. Sci., 292, 598-603. DOI: 10.1016/j.jcis.2005.06.010.

Franks G.V., Li H., O’Shea J.P., Qiao G.G., 2009. Temperature responsive polymers as multiple function reagents in mineral processing. Adv. Powder Technol., 20, 273-279. DOI: 10.1016/j.apt.2009.02.002.

Ghimici L., Constantin M., 2011. Novel thermosensitive flocculanting agent based on pullulan. J. Hazard. Mater., 192, 1009-1016. DOI: 10.1016/j.jhazmat.2011.06.002.

Gong Z., Tang D., Guo Y., 2012. The fabrication and self-flocculation effect of hybrid TiO2 nanoparticles grafted with poly(N-isopropylacrylamide) at ambient temperature via surface-initiated atom transfer radical polymerization. J. Mater. Chem., 22, 16872-16879. DOI: 10.1039/C2JM32168H.

Gregory J., Shamlou P.A. (Eds.), 1993. Processing of solid-liquid suspensions. Butterworth-Heinemann, Oxford, UK, 59-92.

Kuźnik W., Lemanowicz M., Kuś A., Gibas M., Gierczycki A., 2010. Temperature-controlled particle size distribution of chalk suspension utilizing a thermosensitive polymer. Powder Technol., 201, 1-6. DOI: 10.1016/j.powtec.2010.02.026.

Lemanowicz M., Gierczycki A., Kuźnik W., 2016a. Review of stimuli-responsive polymers application as stabilization agents in solid-liquid dispersion systems. Polimery, 61, 92-97. DOI: 10.14314/polimery.2016.092.

Lemanowicz M., Gierczycki A., Kuźnik W., Milczyńska J., Bulanda P., 2016b. Application of thermosensitive polymers in stabilization of colloids. Adv. Powder Technol., 27, 471-480. DOI: 10.1016/j.apt.2016.01.026.

Lemanowicz M., Kuźnik W., Gibas M., Dzido G., Gierczycki A., 2012. Impact of heating method on the flocculation process using thermosensitive polymer. Water Res., 46, 4091-4098. DOI: 10.1016/j.watres.2012.05.014.

Li H., O’Shea J.P., Franks G.V., 2009. Effect of molecular weight of poly(N-isopropyl acrylamide) temperature-sensitive flocculants on dewatering. AIChE J., 55, 2070-2080. DOI: 10.1002/aic.11859.

Liu J., Yan Y., Yao P., 2011. Binding of thermo-sensitive and pH-sensitive butylated poly(allylamine)s with lysozyme. Chinese J. Polym. Sci., 29, 397-406. DOI: 10.1007/s10118-011-1054-6.

Mori T., Tsubaki J., O’Shea J.P., Franks G.V., 2013. Hydrostatic pressure measurement for evaluation of particle dispersion and flocculation in slurries containing temperature responsive polymers. Chem. Eng. Sci., 85, 38-45. DOI: 10.1016/j.ces.2012.02.014.

Qin H., Liu H., Chen Y., 2014. Influence of aliphatic amide terminals on the thermoresponsive properties of hyperbranched polyethylenimines. Chinese J. Polym. Sci., 32, 1338-1347. DOI: 10.1007/s10118-014-1509-7.

Sakohara S., Hinago R., Ueda H., 2008. Compaction of TiO2 suspension by using dual ionic thermosensitive polymers. Sep. Purif. Technol., 63, 319-323. DOI: 10.1016/j.seppur.2008.05.014.

Sakohara S., Kawachi T., Gotoh T., Lizawa T., 2013. Consolidation of suspended particles by using dual ionic thermosensitive polymers with incorporated a hydrophobic component. Sep. Purif. Technol., 106, 90-96. DOI: 10.1016/j.seppur.2012.12.030.

Sakohara S., Ochiai E., Kusaka T., 2007. Dewatering of activated sludge by thermosensitive polymers. Sep. Purif Technol., 56, 296-302. DOI: 10.1016/j.seppur.2007.02.004.

Sakohara S., Yagi S., Iizawa T., 2011. Dewatering of inorganic sludge using dual ionic thermosensitive polymers. Sep. Purif. Technol., 80, 148-154. DOI: 10.1016/j.seppur.2011.04.022.

Seidi F., Heshmati P., 2015. Synthesis of a PEG-PNIPAm Thermosensitive dendritic copolymer and investigation of its self-association. Chinese J. Polym. Sci., 33, 192-202. DOI: 10.1007/s10118-015-1561-y.

Šulc R., Lemanowicz M., Gierczycki A.T., Effect of flocculant sonication on floc growth kinetics occurring in an agitated vessel. Chem. Eng. Proc., 60, 49-54. DOI: 10.1016/j.cep.2012.05.008.

Tadros T. (Ed.), 2013. Encyclopedia of colloid and interface science. Springer-Verlag Berlin Heidelberg, New York, Dordrecht, London. DOI: 10.1007/978-3-642-20665-8.

Tokuyama H., Hisaeda J., Nii S., Sakohara S., 2010. Removal of heavy metal ions and humic acid from aqueous solutions by co-adsorption onto thermosensitive polymers. Sep. Purif. Technol., 71, 83-88. DOI: 10.1016/j.seppur.2009.11.005.

Xing X., Liu G., Ding Y., Zhang G., 2014. Revisiting the thermosensitivity of poly(acrylamide-co-diacetone acrylamide). Chinese J. Polym. Sci., 32, 531-539. DOI: 10.1007/s10118-014-1440-y.

Xue W., Champ S., Huglin M.B., 2000. Observations on some copolymerisations involving N-isopropylacrylamide. Polymer, 41, 7575-7581. DOI: 10.1016/S0032-3861(00)00171-3.

Yan J., Ji W., Chen E., Li Z., Liang D., 2010. Effect of heating rate on thermo-induced aggregation of poly(ethylene oxide)-b-poly(N-isopropylacrylamide) in aqueous solutions. Chinese J. Polym. Sci., 28, 437-447. DOI: 10.1007/s10118-010-9085-y.

Yue G., Cui Q., Zhang Y., Wang E., Wu F., 2012. Thermo-responsive block copolymers based on linear-type poly(ethylene glycol): Tunable LCST within the physiological range. Chinese J. Polym. Sci., 30, 770-776. DOI: 10.1007/s10118-012-1179-2.

Zhang, S., Chen, C., Li, Z., 2013. Effects of molecular weight on thermal responsive property of pegylated poly-l-glutamates. Chinese J. Polym. Sci., 31, 201-210. DOI: 10.1007/s10118-013-1218-7.

Chemical and Process Engineering

The Journal of Committee of Chemical and Process of Polish Academy of Sciences

Journal Information

IMPACT FACTOR 2016: 0.971

CiteScore 2016: 1.03

SCImago Journal Rank (SJR) 2016: 0.395
Source Normalized Impact per Paper (SNIP) 2016: 0.873


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 235 202 5
PDF Downloads 91 84 6